{"title":"Where was this thing again? Evaluating methods to indicate remembered object positions in virtual reality.","authors":"Immo Schuetz, Bianca R Baltaretu, Katja Fiehler","doi":"10.1167/jov.24.7.10","DOIUrl":null,"url":null,"abstract":"<p><p>A current focus in sensorimotor research is the study of human perception and action in increasingly naturalistic tasks and visual environments. This is further enabled by the recent commercial success of virtual reality (VR) technology, which allows for highly realistic but well-controlled three-dimensional (3D) scenes. VR enables a multitude of different ways to interact with virtual objects, but only rarely are such interaction techniques evaluated and compared before being selected for a sensorimotor experiment. Here, we compare different response techniques for a memory-guided action task, in which participants indicated the position of a previously seen 3D object in a VR scene: pointing, using a virtual laser pointer of short or unlimited length, and placing, either the target object itself or a generic reference cube. Response techniques differed in availability of 3D object cues and requirement to physically move to the remembered object position by walking. Object placement was the most accurate but slowest due to repeated repositioning. When placing objects, participants tended to match the original object's orientation. In contrast, the laser pointer was fastest but least accurate, with the short pointer showing a good speed-accuracy compromise. Our findings can help researchers in selecting appropriate methods when studying naturalistic visuomotor behavior in virtual environments.</p>","PeriodicalId":49955,"journal":{"name":"Journal of Vision","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11246095/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vision","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1167/jov.24.7.10","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A current focus in sensorimotor research is the study of human perception and action in increasingly naturalistic tasks and visual environments. This is further enabled by the recent commercial success of virtual reality (VR) technology, which allows for highly realistic but well-controlled three-dimensional (3D) scenes. VR enables a multitude of different ways to interact with virtual objects, but only rarely are such interaction techniques evaluated and compared before being selected for a sensorimotor experiment. Here, we compare different response techniques for a memory-guided action task, in which participants indicated the position of a previously seen 3D object in a VR scene: pointing, using a virtual laser pointer of short or unlimited length, and placing, either the target object itself or a generic reference cube. Response techniques differed in availability of 3D object cues and requirement to physically move to the remembered object position by walking. Object placement was the most accurate but slowest due to repeated repositioning. When placing objects, participants tended to match the original object's orientation. In contrast, the laser pointer was fastest but least accurate, with the short pointer showing a good speed-accuracy compromise. Our findings can help researchers in selecting appropriate methods when studying naturalistic visuomotor behavior in virtual environments.
期刊介绍:
Exploring all aspects of biological visual function, including spatial vision, perception,
low vision, color vision and more, spanning the fields of neuroscience, psychology and psychophysics.