Continuous variation operator configuration for decomposition-based evolutionary multi-objective optimization

IF 8.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Swarm and Evolutionary Computation Pub Date : 2024-07-10 DOI:10.1016/j.swevo.2024.101644
Yuan Liu , Jiazheng Li , Juan Zou , Zhanglu Hou , Shengxiang Yang , Jinhua Zheng
{"title":"Continuous variation operator configuration for decomposition-based evolutionary multi-objective optimization","authors":"Yuan Liu ,&nbsp;Jiazheng Li ,&nbsp;Juan Zou ,&nbsp;Zhanglu Hou ,&nbsp;Shengxiang Yang ,&nbsp;Jinhua Zheng","doi":"10.1016/j.swevo.2024.101644","DOIUrl":null,"url":null,"abstract":"<div><p>There are various multi-objective evolutionary algorithms (MOEAs) for solving multi-objective optimization problems (MOPs), and the significant difference between them lies in the way they generate offspring, which are the so-called variation operators. Since different variation operators have their own characteristics, it is often tedious to select a suitable EA for a given MOP. Even if the optimal operator is assigned, the fixed operator and hyper-parameters make it difficult to balance exploration and exploitation during the evolutionary process. It is imperative to configure variation operators and hyper-parameters automatically during the evolutionary process, which can improve the efficiency of algorithm search. However, numerous configurations only consider operators or discretize hyper-parameters, making it difficult to achieve satisfactory results. In this paper, we formulate the operator configuration as a continuous Markov Decision Process (MDP) and use a suitable Reinforcement Learning (RL) paradigm to realize the online configuration of EAs. To simplify the deployment of MDP, we adopt a decomposition-based framework and use a one-dimensional vector with a combination of weights and objectives as state spaces. In addition, we take the selection of crossover and mutation operators and the fine-tuning of their hyper-parameters as joint action spaces. With an RL technique, we expect to achieve maximum improvement in the performance of offspring on each preference by selecting an action in a given state. We further explore the effectiveness of the proposed methodology on different characteristic MOPs. Experimental results show that our method is more competitive than other configurations and state-of-the-art EAs.</p></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210650224001822","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

There are various multi-objective evolutionary algorithms (MOEAs) for solving multi-objective optimization problems (MOPs), and the significant difference between them lies in the way they generate offspring, which are the so-called variation operators. Since different variation operators have their own characteristics, it is often tedious to select a suitable EA for a given MOP. Even if the optimal operator is assigned, the fixed operator and hyper-parameters make it difficult to balance exploration and exploitation during the evolutionary process. It is imperative to configure variation operators and hyper-parameters automatically during the evolutionary process, which can improve the efficiency of algorithm search. However, numerous configurations only consider operators or discretize hyper-parameters, making it difficult to achieve satisfactory results. In this paper, we formulate the operator configuration as a continuous Markov Decision Process (MDP) and use a suitable Reinforcement Learning (RL) paradigm to realize the online configuration of EAs. To simplify the deployment of MDP, we adopt a decomposition-based framework and use a one-dimensional vector with a combination of weights and objectives as state spaces. In addition, we take the selection of crossover and mutation operators and the fine-tuning of their hyper-parameters as joint action spaces. With an RL technique, we expect to achieve maximum improvement in the performance of offspring on each preference by selecting an action in a given state. We further explore the effectiveness of the proposed methodology on different characteristic MOPs. Experimental results show that our method is more competitive than other configurations and state-of-the-art EAs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于分解的进化多目标优化的连续变化算子配置
用于解决多目标优化问题(MOP)的多目标进化算法(MOEAs)种类繁多,它们之间的显著区别在于生成子代的方式,也就是所谓的变异算子。由于不同的变异算子各有特点,因此为给定的 MOP 选择一个合适的 EA 往往是一件繁琐的事情。即使指定了最佳算子,固定的算子和超参数也很难在进化过程中平衡探索和利用。当务之急是在进化过程中自动配置变化算子和超参数,这可以提高算法搜索的效率。然而,许多配置只考虑算子或将超参数离散化,很难取得令人满意的结果。本文将算子配置表述为连续马尔可夫决策过程(Markov Decision Process,MDP),并采用合适的强化学习(Reinforcement Learning,RL)范式来实现 EA 的在线配置。为了简化 MDP 的部署,我们采用了基于分解的框架,并使用权重和目标组合的一维向量作为状态空间。此外,我们将选择交叉和变异算子以及微调其超参数作为联合行动空间。利用 RL 技术,我们希望通过在给定状态下选择行动,最大限度地提高子代在每个偏好上的表现。我们进一步探讨了所提方法在不同特征澳门威尼斯人网址上的有效性。实验结果表明,与其他配置和最先进的 EA 相比,我们的方法更具竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Swarm and Evolutionary Computation
Swarm and Evolutionary Computation COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
16.00
自引率
12.00%
发文量
169
期刊介绍: Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.
期刊最新文献
A cloud 15kV-HDPE insulator leakage current classification based improved particle swarm optimization and LSTM-CNN deep learning approach A multi-strategy optimizer for energy minimization of multi-UAV-assisted mobile edge computing An archive-assisted multi-modal multi-objective evolutionary algorithm Historical knowledge transfer driven self-adaptive evolutionary multitasking algorithm with hybrid resource release for solving nonlinear equation systems Expected coordinate improvement for high-dimensional Bayesian optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1