Multiple Imputation with Factor Scores: A Practical Approach for Handling Simultaneous Missingness Across Items in Longitudinal Designs.

IF 5.3 3区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Multivariate Behavioral Research Pub Date : 2024-07-12 DOI:10.1080/00273171.2024.2371816
Yanling Li, Zita Oravecz, Linying Ji, Sy-Miin Chow
{"title":"Multiple Imputation with Factor Scores: A Practical Approach for Handling Simultaneous Missingness Across Items in Longitudinal Designs.","authors":"Yanling Li, Zita Oravecz, Linying Ji, Sy-Miin Chow","doi":"10.1080/00273171.2024.2371816","DOIUrl":null,"url":null,"abstract":"<p><p>Missingness in intensive longitudinal data triggered by latent factors constitute one type of nonignorable missingness that can generate simultaneous missingness across multiple items on each measurement occasion. To address this issue, we propose a multiple imputation (MI) strategy called MI-FS, which incorporates factor scores, lag/lead variables, and missing data indicators into the imputation model. In the context of process factor analysis (PFA), we conducted a Monte Carlo simulation study to compare the performance of MI-FS to listwise deletion (LD), MI with manifest variables (MI-MV, which implements MI on both dependent variables and covariates), and partial MI with MVs (PMI-MV, which implements MI on covariates and handles missing dependent variables <i>via</i> full-information maximum likelihood) under different conditions. Across conditions, we found MI-based methods overall outperformed the LD; the MI-FS approach yielded lower root mean square errors (RMSEs) and higher coverage rates for auto-regression (AR) parameters compared to MI-MV; and the PMI-MV and MI-MV approaches yielded higher coverage rates for most parameters except AR parameters compared to MI-FS. These approaches were also compared using an empirical example investigating the relationships between negative affect and perceived stress over time. Recommendations on when and how to incorporate factor scores into MI processes were discussed.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"1-29"},"PeriodicalIF":5.3000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multivariate Behavioral Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/00273171.2024.2371816","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Missingness in intensive longitudinal data triggered by latent factors constitute one type of nonignorable missingness that can generate simultaneous missingness across multiple items on each measurement occasion. To address this issue, we propose a multiple imputation (MI) strategy called MI-FS, which incorporates factor scores, lag/lead variables, and missing data indicators into the imputation model. In the context of process factor analysis (PFA), we conducted a Monte Carlo simulation study to compare the performance of MI-FS to listwise deletion (LD), MI with manifest variables (MI-MV, which implements MI on both dependent variables and covariates), and partial MI with MVs (PMI-MV, which implements MI on covariates and handles missing dependent variables via full-information maximum likelihood) under different conditions. Across conditions, we found MI-based methods overall outperformed the LD; the MI-FS approach yielded lower root mean square errors (RMSEs) and higher coverage rates for auto-regression (AR) parameters compared to MI-MV; and the PMI-MV and MI-MV approaches yielded higher coverage rates for most parameters except AR parameters compared to MI-FS. These approaches were also compared using an empirical example investigating the relationships between negative affect and perceived stress over time. Recommendations on when and how to incorporate factor scores into MI processes were discussed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
因子得分多重估算:在纵向设计中处理各项目同时缺失的实用方法。
由潜在因素引发的密集纵向数据中的缺失是一种不可忽略的缺失,它可能在每个测量场合的多个项目中同时产生缺失。为了解决这个问题,我们提出了一种称为 MI-FS 的多重估算(MI)策略,它将因子得分、滞后/先导变量和缺失数据指标纳入估算模型。在过程因子分析(PFA)的背景下,我们进行了蒙特卡罗模拟研究,比较了 MI-FS 与列表删除法(LD)、带显变量的 MI(MI-MV,对因变量和协变量均实施 MI)以及带 MV 的部分 MI(PMI-MV,对协变量实施 MI,并通过全信息最大似然法处理缺失的因变量)在不同条件下的性能。在不同条件下,我们发现基于 MI 的方法总体上优于 LD;与 MI-MV 相比,MI-FS 方法产生的均方根误差(RMSE)更低,自动回归(AR)参数的覆盖率更高;与 MI-FS 相比,PMI-MV 和 MI-MV 方法产生的除 AR 参数外的大多数参数的覆盖率更高。我们还使用一个实证例子对这些方法进行了比较,该例子调查了负面情绪和感知压力随时间变化的关系。会上还讨论了何时以及如何将因子得分纳入多元智能过程的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Multivariate Behavioral Research
Multivariate Behavioral Research 数学-数学跨学科应用
CiteScore
7.60
自引率
2.60%
发文量
49
审稿时长
>12 weeks
期刊介绍: Multivariate Behavioral Research (MBR) publishes a variety of substantive, methodological, and theoretical articles in all areas of the social and behavioral sciences. Most MBR articles fall into one of two categories. Substantive articles report on applications of sophisticated multivariate research methods to study topics of substantive interest in personality, health, intelligence, industrial/organizational, and other behavioral science areas. Methodological articles present and/or evaluate new developments in multivariate methods, or address methodological issues in current research. We also encourage submission of integrative articles related to pedagogy involving multivariate research methods, and to historical treatments of interest and relevance to multivariate research methods.
期刊最新文献
Latently Mediating: A Bayesian Take on Causal Mediation Analysis with Structured Survey Data. Quantifying Evidence for-and against-Granger Causality with Bayes Factors. Person Specific Parameter Heterogeneity in the 2PL IRT Model. Environment-by-PGS Interaction in the Classical Twin Design: An Application to Childhood Anxiety and Negative Affect. Homogeneity Assumptions in the Analysis of Dynamic Processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1