Jianghe Cai;Yuhui Deng;Yi Zhou;Jiande Huang;Geyong Min
{"title":"FIG: Feature-Weighted Information Granules With High Consistency Rate","authors":"Jianghe Cai;Yuhui Deng;Yi Zhou;Jiande Huang;Geyong Min","doi":"10.1109/TBDATA.2023.3343348","DOIUrl":null,"url":null,"abstract":"Information granules are effective in revealing the structure of data. Therefore, it is a common practice in data mining to use information granules for classifying datasets. In the existing granular classifiers, the information granules are often classified according to the standard membership function only without considering the influence of different feature weights on the quality of granules and label classification results. In this article, we utilize the feature weighting of data to produce the information granules with high consistency rate called FIG. First, we use consistency rate and contribution scores to generate information granules. Then, we propose a granular two-stage classifier GTC based on FIG. GTC divides the data into fuzzy and fixed points and then calculates the interval matching degree to assign data points to the most suitable cluster in the second step. Finally, we compare FIG with two state-of-the-art granular models (T-GrM and FGC-rule), and classification accuracy is also compared with other classification algorithms. The extensive experiments on synthetic datasets and public datasets from UCI show that FIG has sufficient performance to describe the data structure and excellent capability under the constructed granular classifier GTC. Compared with T-GrM and FGC-rule, the time overhead required for FIG to obtain information granules is reduced by an average of 51.07%, the per unit quality of the granules is also increased by more than 14.74%. Compared with other classification algorithms, an average of 5.04% improves GTC accuracy.","PeriodicalId":13106,"journal":{"name":"IEEE Transactions on Big Data","volume":"10 4","pages":"400-414"},"PeriodicalIF":7.5000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Big Data","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10360266/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Information granules are effective in revealing the structure of data. Therefore, it is a common practice in data mining to use information granules for classifying datasets. In the existing granular classifiers, the information granules are often classified according to the standard membership function only without considering the influence of different feature weights on the quality of granules and label classification results. In this article, we utilize the feature weighting of data to produce the information granules with high consistency rate called FIG. First, we use consistency rate and contribution scores to generate information granules. Then, we propose a granular two-stage classifier GTC based on FIG. GTC divides the data into fuzzy and fixed points and then calculates the interval matching degree to assign data points to the most suitable cluster in the second step. Finally, we compare FIG with two state-of-the-art granular models (T-GrM and FGC-rule), and classification accuracy is also compared with other classification algorithms. The extensive experiments on synthetic datasets and public datasets from UCI show that FIG has sufficient performance to describe the data structure and excellent capability under the constructed granular classifier GTC. Compared with T-GrM and FGC-rule, the time overhead required for FIG to obtain information granules is reduced by an average of 51.07%, the per unit quality of the granules is also increased by more than 14.74%. Compared with other classification algorithms, an average of 5.04% improves GTC accuracy.
期刊介绍:
The IEEE Transactions on Big Data publishes peer-reviewed articles focusing on big data. These articles present innovative research ideas and application results across disciplines, including novel theories, algorithms, and applications. Research areas cover a wide range, such as big data analytics, visualization, curation, management, semantics, infrastructure, standards, performance analysis, intelligence extraction, scientific discovery, security, privacy, and legal issues specific to big data. The journal also prioritizes applications of big data in fields generating massive datasets.