Jin Hong Kim, Seoung-Hun Kang, Duhee Yoon, Hakseong Kim, Jin-Soo Kim, Mohd Musaib Haidari, Dong Jin Jang, Jin-Yong Ko, Young-Woo Son, Bae Ho Park, Jin Sik Choi
{"title":"Twist angle-dependent transport properties of twisted bilayer graphene","authors":"Jin Hong Kim, Seoung-Hun Kang, Duhee Yoon, Hakseong Kim, Jin-Soo Kim, Mohd Musaib Haidari, Dong Jin Jang, Jin-Yong Ko, Young-Woo Son, Bae Ho Park, Jin Sik Choi","doi":"10.1038/s41427-024-00556-6","DOIUrl":null,"url":null,"abstract":"<p>Twisted bilayer graphene (tBLG) with small twist angles has attracted significant attention because of its unique electronic properties arising from the formation of a moiré superlattice. In this study, we systematically characterized the twist-angle-dependent electronic and transport properties of tBLG grown via chemical vapor deposition. This characterization included parameters such as the charge-neutral point voltage, carrier concentration, resistance, and mobility, covering a wide range of twist angles from 0° to 30°. We experimentally demonstrated that these parameters exhibited twist-angle-dependent moiré period trends, with high twist angles exceeding 9°, revealing more practically useful features, including improved mobilities compared to those of single-layer graphene. In addition, we demonstrated that the doping states and work functions were weakly dependent on the twist angles, as confirmed by additional first-principles calculations. This study provides valuable insights into the transport properties of tBLG and its potential for practical applications in the emerging field of twistronics.</p>","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":null,"pages":null},"PeriodicalIF":8.6000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Npg Asia Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41427-024-00556-6","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Twisted bilayer graphene (tBLG) with small twist angles has attracted significant attention because of its unique electronic properties arising from the formation of a moiré superlattice. In this study, we systematically characterized the twist-angle-dependent electronic and transport properties of tBLG grown via chemical vapor deposition. This characterization included parameters such as the charge-neutral point voltage, carrier concentration, resistance, and mobility, covering a wide range of twist angles from 0° to 30°. We experimentally demonstrated that these parameters exhibited twist-angle-dependent moiré period trends, with high twist angles exceeding 9°, revealing more practically useful features, including improved mobilities compared to those of single-layer graphene. In addition, we demonstrated that the doping states and work functions were weakly dependent on the twist angles, as confirmed by additional first-principles calculations. This study provides valuable insights into the transport properties of tBLG and its potential for practical applications in the emerging field of twistronics.
期刊介绍:
NPG Asia Materials is an open access, international journal that publishes peer-reviewed review and primary research articles in the field of materials sciences. The journal has a global outlook and reach, with a base in the Asia-Pacific region to reflect the significant and growing output of materials research from this area. The target audience for NPG Asia Materials is scientists and researchers involved in materials research, covering a wide range of disciplines including physical and chemical sciences, biotechnology, and nanotechnology. The journal particularly welcomes high-quality articles from rapidly advancing areas that bridge the gap between materials science and engineering, as well as the classical disciplines of physics, chemistry, and biology. NPG Asia Materials is abstracted/indexed in Journal Citation Reports/Science Edition Web of Knowledge, Google Scholar, Chemical Abstract Services, Scopus, Ulrichsweb (ProQuest), and Scirus.