A New 13T4C LTPO MicroLED Pixel Circuit Producing Highly Stable Driving Current by Minimizing Effect of Parasitic Capacitors and Stabilizing Capacitor Nodes
Ji-Hwan Park;Kyeong-Soo Kang;Chanjin Park;Soo-Yeon Lee
{"title":"A New 13T4C LTPO MicroLED Pixel Circuit Producing Highly Stable Driving Current by Minimizing Effect of Parasitic Capacitors and Stabilizing Capacitor Nodes","authors":"Ji-Hwan Park;Kyeong-Soo Kang;Chanjin Park;Soo-Yeon Lee","doi":"10.1109/JEDS.2024.3417994","DOIUrl":null,"url":null,"abstract":"In this paper, we proposed a new low-temperature polycrystalline oxide (LTPO) thin-film transistor (TFT) pixel circuit for micro light-emitting diode (μ LED) displays that produces a highly stable and uniform driving current. The proposed pixel circuit suppresses the current level change along with the sweep signal due to the parasitic capacitances and compensates for the TFT's threshold voltage (VTH) variation-induced current error, including even falling shape. In addition, the proposed circuit produces a constant current regardless of the data voltage. As a result, a relative current error rate of less than 2% was achieved across all gray levels under the ±0.5 V VTH fluctuation. The proposed circuit was verified using HSPICE with a low-temperature polycrystalline silicon (LTPS) TFT and amorphous indium-galliumzinc- oxide (a-IGZO) TFT model based on the measured data. The simulation analysis confirmed that the optimal sweep signal input position and pulse width modulation (PWM) and constant current generation (CCG) parts connecting method were key design points for stable and uniform performance.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":"12 ","pages":"472-478"},"PeriodicalIF":2.0000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10568954","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of the Electron Devices Society","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10568954/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we proposed a new low-temperature polycrystalline oxide (LTPO) thin-film transistor (TFT) pixel circuit for micro light-emitting diode (μ LED) displays that produces a highly stable and uniform driving current. The proposed pixel circuit suppresses the current level change along with the sweep signal due to the parasitic capacitances and compensates for the TFT's threshold voltage (VTH) variation-induced current error, including even falling shape. In addition, the proposed circuit produces a constant current regardless of the data voltage. As a result, a relative current error rate of less than 2% was achieved across all gray levels under the ±0.5 V VTH fluctuation. The proposed circuit was verified using HSPICE with a low-temperature polycrystalline silicon (LTPS) TFT and amorphous indium-galliumzinc- oxide (a-IGZO) TFT model based on the measured data. The simulation analysis confirmed that the optimal sweep signal input position and pulse width modulation (PWM) and constant current generation (CCG) parts connecting method were key design points for stable and uniform performance.
期刊介绍:
The IEEE Journal of the Electron Devices Society (J-EDS) is an open-access, fully electronic scientific journal publishing papers ranging from fundamental to applied research that are scientifically rigorous and relevant to electron devices. The J-EDS publishes original and significant contributions relating to the theory, modelling, design, performance, and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanodevices, optoelectronics, photovoltaics, power IC''s, and micro-sensors. Tutorial and review papers on these subjects are, also, published. And, occasionally special issues with a collection of papers on particular areas in more depth and breadth are, also, published. J-EDS publishes all papers that are judged to be technically valid and original.