A New 13T4C LTPO MicroLED Pixel Circuit Producing Highly Stable Driving Current by Minimizing Effect of Parasitic Capacitors and Stabilizing Capacitor Nodes

IF 2 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal of the Electron Devices Society Pub Date : 2024-06-24 DOI:10.1109/JEDS.2024.3417994
Ji-Hwan Park;Kyeong-Soo Kang;Chanjin Park;Soo-Yeon Lee
{"title":"A New 13T4C LTPO MicroLED Pixel Circuit Producing Highly Stable Driving Current by Minimizing Effect of Parasitic Capacitors and Stabilizing Capacitor Nodes","authors":"Ji-Hwan Park;Kyeong-Soo Kang;Chanjin Park;Soo-Yeon Lee","doi":"10.1109/JEDS.2024.3417994","DOIUrl":null,"url":null,"abstract":"In this paper, we proposed a new low-temperature polycrystalline oxide (LTPO) thin-film transistor (TFT) pixel circuit for micro light-emitting diode (μ LED) displays that produces a highly stable and uniform driving current. The proposed pixel circuit suppresses the current level change along with the sweep signal due to the parasitic capacitances and compensates for the TFT's threshold voltage (VTH) variation-induced current error, including even falling shape. In addition, the proposed circuit produces a constant current regardless of the data voltage. As a result, a relative current error rate of less than 2% was achieved across all gray levels under the ±0.5 V VTH fluctuation. The proposed circuit was verified using HSPICE with a low-temperature polycrystalline silicon (LTPS) TFT and amorphous indium-galliumzinc- oxide (a-IGZO) TFT model based on the measured data. The simulation analysis confirmed that the optimal sweep signal input position and pulse width modulation (PWM) and constant current generation (CCG) parts connecting method were key design points for stable and uniform performance.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":"12 ","pages":"472-478"},"PeriodicalIF":2.0000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10568954","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of the Electron Devices Society","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10568954/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we proposed a new low-temperature polycrystalline oxide (LTPO) thin-film transistor (TFT) pixel circuit for micro light-emitting diode (μ LED) displays that produces a highly stable and uniform driving current. The proposed pixel circuit suppresses the current level change along with the sweep signal due to the parasitic capacitances and compensates for the TFT's threshold voltage (VTH) variation-induced current error, including even falling shape. In addition, the proposed circuit produces a constant current regardless of the data voltage. As a result, a relative current error rate of less than 2% was achieved across all gray levels under the ±0.5 V VTH fluctuation. The proposed circuit was verified using HSPICE with a low-temperature polycrystalline silicon (LTPS) TFT and amorphous indium-galliumzinc- oxide (a-IGZO) TFT model based on the measured data. The simulation analysis confirmed that the optimal sweep signal input position and pulse width modulation (PWM) and constant current generation (CCG) parts connecting method were key design points for stable and uniform performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新型 13T4C LTPO MicroLED 像素电路,通过最小化寄生电容和稳定电容节点的影响产生高度稳定的驱动电流
本文提出了一种用于微型发光二极管(μ LED)显示器的新型低温多晶氧化物(LTPO)薄膜晶体管(TFT)像素电路,可产生高度稳定和均匀的驱动电流。所提出的像素电路可抑制寄生电容导致的电流电平随扫描信号的变化,并补偿 TFT 的阈值电压 (VTH) 变化引起的电流误差,包括均匀的下降形状。此外,无论数据电压如何变化,所提出的电路都能产生恒定的电流。因此,在 ±0.5 V VTH 波动下,所有灰度级的相对电流误差率均小于 2%。根据测量数据,使用 HSPICE 对低温多晶硅 (LTPS) TFT 和非晶铟镓锌氧化物 (a-IGZO) TFT 模型进行了验证。仿真分析证实,最佳扫描信号输入位置以及脉宽调制 (PWM) 和恒流发电 (CCG) 部件连接方法是实现稳定和均匀性能的关键设计点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Journal of the Electron Devices Society
IEEE Journal of the Electron Devices Society Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
5.20
自引率
4.30%
发文量
124
审稿时长
9 weeks
期刊介绍: The IEEE Journal of the Electron Devices Society (J-EDS) is an open-access, fully electronic scientific journal publishing papers ranging from fundamental to applied research that are scientifically rigorous and relevant to electron devices. The J-EDS publishes original and significant contributions relating to the theory, modelling, design, performance, and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanodevices, optoelectronics, photovoltaics, power IC''s, and micro-sensors. Tutorial and review papers on these subjects are, also, published. And, occasionally special issues with a collection of papers on particular areas in more depth and breadth are, also, published. J-EDS publishes all papers that are judged to be technically valid and original.
期刊最新文献
Corrections to “Emergence of Negative Differential Resistance Through Hole Resonant Tunneling in GeSn/GeSiSn Double Barrier Structure” Self-Aligned Staggered Amorphous-Indium-Gallium-Zinc-Oxide Thin-Film Transistors With Ultra-Low Contact Resistance for High-Speed Circuits Application A Highly Robust Integrated Gate Driver Based on Organic TFTs for Active-Matrix Displays Generic Cryogenic CMOS Device Modeling and EDA-Compatible Platform for Reliable Cryogenic IC Design A 3-kV GaN MISHEMT With High Reliability and a Power Figure-of-Merit of 685 MW/cm²
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1