Deconstruction of unsaturated polymers through photo-mediated oxidation under O2

IF 7.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Cell Reports Physical Science Pub Date : 2024-07-12 DOI:10.1016/j.xcrp.2024.102104
Hanlin Chen, Xin Guan, Puyan Zhang, Devavrat Sathe, Junpeng Wang
{"title":"Deconstruction of unsaturated polymers through photo-mediated oxidation under O2","authors":"Hanlin Chen, Xin Guan, Puyan Zhang, Devavrat Sathe, Junpeng Wang","doi":"10.1016/j.xcrp.2024.102104","DOIUrl":null,"url":null,"abstract":"<p>While oxidative cleavage has been a well-known strategy to degrade unsaturated polymers, most processes require harsh conditions and/or expensive oxidizing agents. Using O<sub>2</sub> to degrade polymers is highly desirable, but no reported process is well controlled for the chemical recycling of polymers. Here, we report a photo-mediated oxidative degradation process for unsaturated polymers under O<sub>2</sub> using an earth-abundant Mn catalyst, and the process is demonstrated with polybutadiene, polydicyclopentadiene, and dehydrogenated polyethylene. Nonactivated internal alkenes in these polymers can be effectively cleaved without elevated temperature or pressure. The oxidation process generates acetal as the main functionality, which can be used for further recycling. As a proof of concept, the oligomers with acetal end groups, resulting from the oxidation of polybutadiene, are shown to undergo transacetalization with polyols to form a polymer network. The oxidation process demonstrated here holds promise for the recycling of hydrocarbon polymers under mild conditions in a cost-effective fashion.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":null,"pages":null},"PeriodicalIF":7.9000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Physical Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.xcrp.2024.102104","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

While oxidative cleavage has been a well-known strategy to degrade unsaturated polymers, most processes require harsh conditions and/or expensive oxidizing agents. Using O2 to degrade polymers is highly desirable, but no reported process is well controlled for the chemical recycling of polymers. Here, we report a photo-mediated oxidative degradation process for unsaturated polymers under O2 using an earth-abundant Mn catalyst, and the process is demonstrated with polybutadiene, polydicyclopentadiene, and dehydrogenated polyethylene. Nonactivated internal alkenes in these polymers can be effectively cleaved without elevated temperature or pressure. The oxidation process generates acetal as the main functionality, which can be used for further recycling. As a proof of concept, the oligomers with acetal end groups, resulting from the oxidation of polybutadiene, are shown to undergo transacetalization with polyols to form a polymer network. The oxidation process demonstrated here holds promise for the recycling of hydrocarbon polymers under mild conditions in a cost-effective fashion.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在氧气条件下通过光介导氧化解构不饱和聚合物
虽然氧化裂解是一种众所周知的降解不饱和聚合物的策略,但大多数工艺都需要苛刻的条件和/或昂贵的氧化剂。利用氧气降解聚合物是非常理想的选择,但目前还没有报道称聚合物的化学回收过程可以得到很好的控制。在此,我们报告了一种在氧气条件下利用富土锰催化剂对不饱和聚合物进行光介导氧化降解的过程,并用聚丁二烯、聚二环戊二烯和脱氢聚乙烯对该过程进行了演示。这些聚合物中的非活化内烯无需升温或升压即可有效裂解。氧化过程产生的缩醛是主要的官能团,可用于进一步回收利用。作为概念验证,聚丁二烯氧化产生的带有缩醛末端基团的低聚物可与多元醇发生反乙醛化反应,形成聚合物网络。这里展示的氧化工艺有望在温和条件下以经济高效的方式回收碳氢化合物聚合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Reports Physical Science
Cell Reports Physical Science Energy-Energy (all)
CiteScore
11.40
自引率
2.20%
发文量
388
审稿时长
62 days
期刊介绍: Cell Reports Physical Science, a premium open-access journal from Cell Press, features high-quality, cutting-edge research spanning the physical sciences. It serves as an open forum fostering collaboration among physical scientists while championing open science principles. Published works must signify significant advancements in fundamental insight or technological applications within fields such as chemistry, physics, materials science, energy science, engineering, and related interdisciplinary studies. In addition to longer articles, the journal considers impactful short-form reports and short reviews covering recent literature in emerging fields. Continually adapting to the evolving open science landscape, the journal reviews its policies to align with community consensus and best practices.
期刊最新文献
Paper microfluidic sentinel sensors enable rapid and on-site wastewater surveillance in community settings Catalyzing deep decarbonization with federated battery diagnosis and prognosis for better data management in energy storage systems 4.8-V all-solid-state garnet-based lithium-metal batteries with stable interface Deformation of collagen-based tissues investigated using a systematic review and meta-analysis of synchrotron x-ray scattering studies Catalysis for plastic deconstruction and upcycling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1