A variational graph-partitioning approach to modeling protein liquid-liquid phase separation.

IF 7.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Cell Reports Physical Science Pub Date : 2024-11-20 DOI:10.1016/j.xcrp.2024.102292
Gaoyuan Wang, Jonathan Warrell, Suchen Zheng, Mark Gerstein
{"title":"A variational graph-partitioning approach to modeling protein liquid-liquid phase separation.","authors":"Gaoyuan Wang, Jonathan Warrell, Suchen Zheng, Mark Gerstein","doi":"10.1016/j.xcrp.2024.102292","DOIUrl":null,"url":null,"abstract":"<p><p>Graph neural networks (GNNs) have emerged as powerful tools for representation learning. Their efficacy depends on their having an optimal underlying graph. In many cases, the most relevant information comes from specific subgraphs. In this work, we introduce a GNN-based framework (graph-partitioned GNN [GP-GNN]) to partition the GNN graph to focus on the most relevant subgraphs. Our approach jointly learns task-dependent graph partitions and node representations, making it particularly effective when critical features reside within initially unidentified subgraphs. Protein liquid-liquid phase separation (LLPS) is a problem especially well-suited to GP-GNNs because intrinsically disordered regions (IDRs) are known to function as protein subdomains in it, playing a key role in the phase separation process. In this study, we demonstrate how GP-GNN accurately predicts LLPS by partitioning protein graphs into task-relevant subgraphs consistent with known IDRs. Our model achieves state-of-the-art accuracy in predicting LLPS and offers biological insights valuable for downstream investigation.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"5 11","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11760192/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Physical Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.xcrp.2024.102292","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Graph neural networks (GNNs) have emerged as powerful tools for representation learning. Their efficacy depends on their having an optimal underlying graph. In many cases, the most relevant information comes from specific subgraphs. In this work, we introduce a GNN-based framework (graph-partitioned GNN [GP-GNN]) to partition the GNN graph to focus on the most relevant subgraphs. Our approach jointly learns task-dependent graph partitions and node representations, making it particularly effective when critical features reside within initially unidentified subgraphs. Protein liquid-liquid phase separation (LLPS) is a problem especially well-suited to GP-GNNs because intrinsically disordered regions (IDRs) are known to function as protein subdomains in it, playing a key role in the phase separation process. In this study, we demonstrate how GP-GNN accurately predicts LLPS by partitioning protein graphs into task-relevant subgraphs consistent with known IDRs. Our model achieves state-of-the-art accuracy in predicting LLPS and offers biological insights valuable for downstream investigation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Reports Physical Science
Cell Reports Physical Science Energy-Energy (all)
CiteScore
11.40
自引率
2.20%
发文量
388
审稿时长
62 days
期刊介绍: Cell Reports Physical Science, a premium open-access journal from Cell Press, features high-quality, cutting-edge research spanning the physical sciences. It serves as an open forum fostering collaboration among physical scientists while championing open science principles. Published works must signify significant advancements in fundamental insight or technological applications within fields such as chemistry, physics, materials science, energy science, engineering, and related interdisciplinary studies. In addition to longer articles, the journal considers impactful short-form reports and short reviews covering recent literature in emerging fields. Continually adapting to the evolving open science landscape, the journal reviews its policies to align with community consensus and best practices.
期刊最新文献
Ultrafast synthesis of zirconium-porphyrin framework nanocrystals from alkoxide precursors. Lignin as a bioderived modular surfactant and intercalant for Ti3C2Tx MXene stabilization and tunable functions. Sequence-dependent conformational preferences of disordered single-stranded RNA. A variational graph-partitioning approach to modeling protein liquid-liquid phase separation. Amino acid-dependent phase equilibrium and material properties of tetrapeptide condensates.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1