Ultrahigh Ni-Rich (90%) Layered Oxide-Based Cathode Active Materials: The Advantages of Tungsten (W) Incorporation in the Precursor Cathode Active Material
Marcel Heidbüchel, Aurora Gomez-Martin, Lars Frankenstein, Ardavan Makvandi, Martin Peterlechner, Gerhard Wilde, Martin Winter, Johannes Kasnatscheew
{"title":"Ultrahigh Ni-Rich (90%) Layered Oxide-Based Cathode Active Materials: The Advantages of Tungsten (W) Incorporation in the Precursor Cathode Active Material","authors":"Marcel Heidbüchel, Aurora Gomez-Martin, Lars Frankenstein, Ardavan Makvandi, Martin Peterlechner, Gerhard Wilde, Martin Winter, Johannes Kasnatscheew","doi":"10.1002/smsc.202400135","DOIUrl":null,"url":null,"abstract":"Minor amounts of tungsten (W) are well known to improve Ni-rich layered oxide-based cathode active materials (CAMs) for Li ion batteries. Herein, W impacts are validated and compared for varied concentrations and incorporation routes in aqueous media for LiNi<sub>0.90</sub>Co<sub>0.06</sub>Mn<sub>0.04</sub>O<sub>2</sub> (NCM90-6-4), either via modification of a precursor Ni<sub><i>x</i></sub>Co<sub><i>y</i></sub>Mn<sub><i>z</i></sub>(OH)<sub>2</sub> (pCAM) within a sol–gel reaction or directly during synthesis, i.e., either via an W-based educt or during co-precipitation in a continuously operated Couette–Taylor reactor. In particular, the sol–gel modification is shown to be beneficial and reveals >500 cycles for ≈80% state-of-health NCM90-6-4||graphite cells. It can be related to homogeneously W-modified surface as well as smaller and elongated primary particles, whereas the latter are suggested to better compensate anisotropic lattice stress and decrease amount of microcracks, consequently minimizing further rise in surface area and the accompanied failure cascades (e.g., phase changes, metal dissolution, and crosstalk). Moreover, the different incorporation routes are shown to reveal different outcomes and demonstrate the complexity and sensitivity of W incorporation.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"59 1","pages":""},"PeriodicalIF":11.1000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smsc.202400135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Minor amounts of tungsten (W) are well known to improve Ni-rich layered oxide-based cathode active materials (CAMs) for Li ion batteries. Herein, W impacts are validated and compared for varied concentrations and incorporation routes in aqueous media for LiNi0.90Co0.06Mn0.04O2 (NCM90-6-4), either via modification of a precursor NixCoyMnz(OH)2 (pCAM) within a sol–gel reaction or directly during synthesis, i.e., either via an W-based educt or during co-precipitation in a continuously operated Couette–Taylor reactor. In particular, the sol–gel modification is shown to be beneficial and reveals >500 cycles for ≈80% state-of-health NCM90-6-4||graphite cells. It can be related to homogeneously W-modified surface as well as smaller and elongated primary particles, whereas the latter are suggested to better compensate anisotropic lattice stress and decrease amount of microcracks, consequently minimizing further rise in surface area and the accompanied failure cascades (e.g., phase changes, metal dissolution, and crosstalk). Moreover, the different incorporation routes are shown to reveal different outcomes and demonstrate the complexity and sensitivity of W incorporation.
期刊介绍:
Small Science is a premium multidisciplinary open access journal dedicated to publishing impactful research from all areas of nanoscience and nanotechnology. It features interdisciplinary original research and focused review articles on relevant topics. The journal covers design, characterization, mechanism, technology, and application of micro-/nanoscale structures and systems in various fields including physics, chemistry, materials science, engineering, environmental science, life science, biology, and medicine. It welcomes innovative interdisciplinary research and its readership includes professionals from academia and industry in fields such as chemistry, physics, materials science, biology, engineering, and environmental and analytical science. Small Science is indexed and abstracted in CAS, DOAJ, Clarivate Analytics, ProQuest Central, Publicly Available Content Database, Science Database, SCOPUS, and Web of Science.