Nolan J Hoffman, Jamie Whitfield, Di Xiao, Bridget E Radford, Veronika Suni, Ronnie Blazev, Pengyi Yang, Benjamin L Parker, John A Hawley
{"title":"Phosphoproteomics uncovers exercise intensity-specific signaling networks underlying high-intensity interval training in human skeletal muscle","authors":"Nolan J Hoffman, Jamie Whitfield, Di Xiao, Bridget E Radford, Veronika Suni, Ronnie Blazev, Pengyi Yang, Benjamin L Parker, John A Hawley","doi":"10.1101/2024.07.11.24310302","DOIUrl":null,"url":null,"abstract":"In response to exercise, protein kinases and signaling networks are rapidly engaged in skeletal muscle to maintain energy homeostasis. High-intensity interval training (HIIT) induces superior or similar health-promoting skeletal muscle and whole-body adaptations compared to prolonged, moderate-intensity continuous training (MICT). However, the exercise intensity-specific signaling pathways underlying HIIT versus MICT are unknown. Ten healthy male participants completed bouts of work- and duration-matched HIIT and MICT cycling in randomized crossover trials. Mass spectrometry-based phosphoproteomic analysis of human muscle biopsies mapped acute signaling responses to HIIT and MICT, identifying 14,931 phosphopeptides and 8,509 phosphosites. Bioinformatics uncovered >1,000 phosphosites significantly regulated by HIIT and/or MICT, including 92 and 348 respective HIIT-specific phosphosites after 5 and 10 min and >3,000 total phosphosites significantly correlated with plasma lactate. This first human muscle HIIT signaling network map has revealed rapid exercise intensity-specific regulation of kinases, substrates and pathways that may contribute to HIIT's unique health-promoting effects.","PeriodicalId":501122,"journal":{"name":"medRxiv - Sports Medicine","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Sports Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.07.11.24310302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In response to exercise, protein kinases and signaling networks are rapidly engaged in skeletal muscle to maintain energy homeostasis. High-intensity interval training (HIIT) induces superior or similar health-promoting skeletal muscle and whole-body adaptations compared to prolonged, moderate-intensity continuous training (MICT). However, the exercise intensity-specific signaling pathways underlying HIIT versus MICT are unknown. Ten healthy male participants completed bouts of work- and duration-matched HIIT and MICT cycling in randomized crossover trials. Mass spectrometry-based phosphoproteomic analysis of human muscle biopsies mapped acute signaling responses to HIIT and MICT, identifying 14,931 phosphopeptides and 8,509 phosphosites. Bioinformatics uncovered >1,000 phosphosites significantly regulated by HIIT and/or MICT, including 92 and 348 respective HIIT-specific phosphosites after 5 and 10 min and >3,000 total phosphosites significantly correlated with plasma lactate. This first human muscle HIIT signaling network map has revealed rapid exercise intensity-specific regulation of kinases, substrates and pathways that may contribute to HIIT's unique health-promoting effects.