Hippocampal Engrams and Contextual Memory.

Q3 Neuroscience Advances in neurobiology Pub Date : 2024-01-01 DOI:10.1007/978-3-031-62983-9_4
Krithika Vasudevan, James E Hassell, Stephen Maren
{"title":"Hippocampal Engrams and Contextual Memory.","authors":"Krithika Vasudevan, James E Hassell, Stephen Maren","doi":"10.1007/978-3-031-62983-9_4","DOIUrl":null,"url":null,"abstract":"<p><p>Memories are not formed in a vacuum and often include rich details about the time and place in which events occur. Contextual stimuli promote the retrieval of events that have previously occurred in the encoding context and limit the retrieval of context-inappropriate information. Contexts that are associated with traumatic or harmful events both directly elicit fear and serve as reminders of aversive events associated with trauma. It has long been appreciated that the hippocampus is involved in contextual learning and memory and is central to contextual fear conditioning. However, little is known about the underlying neuronal mechanisms underlying the encoding and retrieval of contextual fear memories. Recent advancements in neuronal labeling methods, including activity-dependent tagging of cellular ensembles encoding memory (\"engrams\"), provide unique insight into the neural substrates of memory in the hippocampus. Moreover, these methods allow for the selective manipulation of memory ensembles. Attenuating or erasing fear memories may have considerable therapeutic value for patients with post-traumatic stress disorder or other trauma- or stressor-related conditions. In this chapter, we review the role of the hippocampus in contextual fear conditioning in rodents and explore recent work implicating hippocampal ensembles in the encoding and retrieval of aversive memories.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in neurobiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-62983-9_4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 0

Abstract

Memories are not formed in a vacuum and often include rich details about the time and place in which events occur. Contextual stimuli promote the retrieval of events that have previously occurred in the encoding context and limit the retrieval of context-inappropriate information. Contexts that are associated with traumatic or harmful events both directly elicit fear and serve as reminders of aversive events associated with trauma. It has long been appreciated that the hippocampus is involved in contextual learning and memory and is central to contextual fear conditioning. However, little is known about the underlying neuronal mechanisms underlying the encoding and retrieval of contextual fear memories. Recent advancements in neuronal labeling methods, including activity-dependent tagging of cellular ensembles encoding memory ("engrams"), provide unique insight into the neural substrates of memory in the hippocampus. Moreover, these methods allow for the selective manipulation of memory ensembles. Attenuating or erasing fear memories may have considerable therapeutic value for patients with post-traumatic stress disorder or other trauma- or stressor-related conditions. In this chapter, we review the role of the hippocampus in contextual fear conditioning in rodents and explore recent work implicating hippocampal ensembles in the encoding and retrieval of aversive memories.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
海马刻痕与情境记忆
记忆并不是在真空中形成的,它通常包含有关事件发生的时间和地点的丰富细节。情境刺激会促进对编码情境中先前发生的事件的检索,并限制对情境不恰当信息的检索。与创伤或有害事件相关的情境既能直接引起恐惧,又能提醒人们与创伤相关的厌恶事件。长期以来,人们一直认为海马体参与了情境学习和记忆,并且是情境恐惧条件反射的核心。然而,人们对情境性恐惧记忆的编码和检索的潜在神经元机制知之甚少。神经元标记方法的最新进展,包括对编码记忆("镌刻")的细胞集合进行活动依赖性标记,为人们深入了解海马区记忆的神经基质提供了独特的视角。此外,这些方法还能对记忆组合进行选择性操纵。减弱或消除恐惧记忆可能对创伤后应激障碍或其他创伤或应激相关疾病患者有相当大的治疗价值。在本章中,我们将回顾海马在啮齿类动物情境恐惧条件反射中的作用,并探讨最近有关海马记忆组在编码和检索厌恶记忆中的作用的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in neurobiology
Advances in neurobiology Neuroscience-Neurology
CiteScore
2.80
自引率
0.00%
发文量
0
期刊最新文献
A Self-Similarity Logic May Shape the Organization of the Nervous System. Advances in Understanding Fractals in Affective and Anxiety Disorders. Analyzing Eye Paths Using Fractals. Box-Counting Fractal Analysis: A Primer for the Clinician. Clinical Sensitivity of Fractal Neurodynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1