Impaired autophagy-mediated macrophage polarization contributes to age-related hyposalivation.

IF 5.9 1区 生物学 Q2 CELL BIOLOGY Cell Proliferation Pub Date : 2024-07-14 DOI:10.1111/cpr.13714
Zhili Xin, Rongyao Xu, Yangjiele Dong, Shenghao Jin, Xiao Ge, Xin Shen, Songsong Guo, Yu Fu, Ping Zhang, Hongbing Jiang
{"title":"Impaired autophagy-mediated macrophage polarization contributes to age-related hyposalivation.","authors":"Zhili Xin, Rongyao Xu, Yangjiele Dong, Shenghao Jin, Xiao Ge, Xin Shen, Songsong Guo, Yu Fu, Ping Zhang, Hongbing Jiang","doi":"10.1111/cpr.13714","DOIUrl":null,"url":null,"abstract":"<p><p>Age-related dysfunction of salivary glands (SGs) leading to xerostomia or dry mouth is typically associated with increased dental caries and difficulties in mastication, deglutition or speech. Inflammaging-induced hyposalivation plays a significant role in aged SGs; however, the mechanisms by which ageing shapes the inflammatory microenvironment of SGs remain unclear. Here, we show that reduced salivary secretion flow rate in aged human and mice SGs is associated with impaired autophagy and increased M1 polarization of macrophages. Our study reveals the crucial roles of SIRT6 in regulating macrophage autophagy and polarization through the PI3K/AKT/mTOR pathway, as demonstrated by generating two conditional knock out mice. Furthermore, triptolide (TP) effectively rejuvenates macrophage autophagy and polarization via targeting this pathway. We also design a local delivery of TP-loaded apoptotic extracellular vesicles (ApoEVs) to improve age-related SGs dysfunction therapeutically. Collectively, our findings uncover a previously unknown link between SIRT6-regulated autophagy and macrophage polarization in age-mediated hyposalivation, while our locally therapeutic strategy exhibits potential preventive effects for age-related hyposalivation.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e13714"},"PeriodicalIF":5.9000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Proliferation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/cpr.13714","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Age-related dysfunction of salivary glands (SGs) leading to xerostomia or dry mouth is typically associated with increased dental caries and difficulties in mastication, deglutition or speech. Inflammaging-induced hyposalivation plays a significant role in aged SGs; however, the mechanisms by which ageing shapes the inflammatory microenvironment of SGs remain unclear. Here, we show that reduced salivary secretion flow rate in aged human and mice SGs is associated with impaired autophagy and increased M1 polarization of macrophages. Our study reveals the crucial roles of SIRT6 in regulating macrophage autophagy and polarization through the PI3K/AKT/mTOR pathway, as demonstrated by generating two conditional knock out mice. Furthermore, triptolide (TP) effectively rejuvenates macrophage autophagy and polarization via targeting this pathway. We also design a local delivery of TP-loaded apoptotic extracellular vesicles (ApoEVs) to improve age-related SGs dysfunction therapeutically. Collectively, our findings uncover a previously unknown link between SIRT6-regulated autophagy and macrophage polarization in age-mediated hyposalivation, while our locally therapeutic strategy exhibits potential preventive effects for age-related hyposalivation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自噬介导的巨噬细胞极化受损是与年龄相关的唾液分泌过少的原因之一。
与年龄相关的唾液腺(SGs)功能障碍导致的口腔干燥症通常与龋齿增加以及咀嚼、吞咽或说话困难有关。炎症诱导的唾液分泌减少在老化的唾液腺中起着重要作用;然而,老化塑造唾液腺炎症微环境的机制仍不清楚。在这里,我们发现,人和小鼠老年唾液腺分泌流量的减少与自噬功能受损和巨噬细胞的 M1 极化增加有关。我们的研究揭示了 SIRT6 在通过 PI3K/AKT/mTOR 通路调节巨噬细胞自噬和极化中的关键作用,这一点已通过产生两种条件性基因敲除小鼠得到证实。此外,曲普内酯(TP)通过靶向这一途径有效地恢复巨噬细胞的自噬和极化。我们还设计了一种局部递送负载 TP 的凋亡细胞外囊泡 (ApoEVs)的方法,以治疗性地改善与年龄相关的 SGs 功能障碍。总之,我们的研究结果揭示了 SIRT6 调节的自噬和巨噬细胞极化在年龄介导的唾液腺功能减退中的联系,而我们的局部治疗策略对年龄相关性唾液腺功能减退具有潜在的预防作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Proliferation
Cell Proliferation 生物-细胞生物学
CiteScore
14.80
自引率
2.40%
发文量
198
审稿时长
1 months
期刊介绍: Cell Proliferation Focus: Devoted to studies into all aspects of cell proliferation and differentiation. Covers normal and abnormal states. Explores control systems and mechanisms at various levels: inter- and intracellular, molecular, and genetic. Investigates modification by and interactions with chemical and physical agents. Includes mathematical modeling and the development of new techniques. Publication Content: Original research papers Invited review articles Book reviews Letters commenting on previously published papers and/or topics of general interest By organizing the information in this manner, readers can quickly grasp the scope, focus, and publication content of Cell Proliferation.
期刊最新文献
Targeting Hsp90α to inhibit HMGB1-mediated renal inflammation and fibrosis. Direct reprogramming of fibroblasts into spiral ganglion neurons by defined transcription factors. The apoptotic and anti-proliferative effects of Neosetophomone B in T-cell acute lymphoblastic leukaemia via PI3K/AKT/mTOR pathway inhibition. Synergy between pluripotent stem cell-derived macrophages and self-renewing macrophages: Envisioning a promising avenue for the modelling and cell therapy of infectious diseases. Predicting tumour resistance to paclitaxel and carboplatin utilising genome-wide screening in haploid human embryonic stem cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1