Yulin Guo, Paromita Nath, Sankaran Mahadevan, Paul Witherell
{"title":"Active learning for adaptive surrogate model improvement in high-dimensional problems.","authors":"Yulin Guo, Paromita Nath, Sankaran Mahadevan, Paul Witherell","doi":"10.1007/s00158-024-03816-9","DOIUrl":null,"url":null,"abstract":"<p><p>This paper investigates a novel approach to efficiently construct and improve surrogate models in problems with high-dimensional input and output. In this approach, the principal components and corresponding features of the high-dimensional output are first identified. For each feature, the active subspace technique is used to identify a corresponding low-dimensional subspace of the input domain; then a surrogate model is built for each feature in its corresponding active subspace. A low-dimensional adaptive learning strategy is proposed to identify training samples to improve the surrogate model. In contrast to existing adaptive learning methods that focus on a scalar output or a small number of outputs, this paper addresses adaptive learning with high-dimensional input and output, with a novel learning function that balances exploration and exploitation, i.e., considering unexplored regions and high-error regions, respectively. The adaptive learning is in terms of the active variables in the low-dimensional space, and the newly added training samples can be easily mapped back to the original space for running the expensive physics model. The proposed method is demonstrated for the numerical simulation of an additive manufacturing part, with a high-dimensional field output quantity of interest (residual stress) in the component that has spatial variability due to the stochastic nature of multiple input variables (including process variables and material properties). Various factors in the adaptive learning process are investigated, including the number of training samples, range and distribution of the adaptive training samples, contributions of various errors, and the importance of exploration versus exploitation in the learning function.</p>","PeriodicalId":21994,"journal":{"name":"Structural and Multidisciplinary Optimization","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11236939/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural and Multidisciplinary Optimization","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00158-024-03816-9","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates a novel approach to efficiently construct and improve surrogate models in problems with high-dimensional input and output. In this approach, the principal components and corresponding features of the high-dimensional output are first identified. For each feature, the active subspace technique is used to identify a corresponding low-dimensional subspace of the input domain; then a surrogate model is built for each feature in its corresponding active subspace. A low-dimensional adaptive learning strategy is proposed to identify training samples to improve the surrogate model. In contrast to existing adaptive learning methods that focus on a scalar output or a small number of outputs, this paper addresses adaptive learning with high-dimensional input and output, with a novel learning function that balances exploration and exploitation, i.e., considering unexplored regions and high-error regions, respectively. The adaptive learning is in terms of the active variables in the low-dimensional space, and the newly added training samples can be easily mapped back to the original space for running the expensive physics model. The proposed method is demonstrated for the numerical simulation of an additive manufacturing part, with a high-dimensional field output quantity of interest (residual stress) in the component that has spatial variability due to the stochastic nature of multiple input variables (including process variables and material properties). Various factors in the adaptive learning process are investigated, including the number of training samples, range and distribution of the adaptive training samples, contributions of various errors, and the importance of exploration versus exploitation in the learning function.
期刊介绍:
The journal’s scope ranges from mathematical foundations of the field to algorithm and software development, and from benchmark examples to case studies of practical applications in structural, aero-space, mechanical, civil, chemical, naval and bio-engineering.
Fields such as computer-aided design and manufacturing, uncertainty quantification, artificial intelligence, system identification and modeling, inverse processes, computer simulation, bio-mechanics, bio-medical applications, nano-technology, MEMS, optics, chemical processes, computational biology, meta-modeling, DOE and active control of structures are covered when the topic is closely related to the optimization of structures or fluids.
Structural and Multidisciplinary Optimization publishes original research papers, review articles, industrial applications, brief notes, educational articles, book reviews, conference diary, forum section, discussions on papers, authors´ replies, obituaries, announcements and society news.