Miocene sequences and depocentres in the Roer Valley Rift System

IF 2.8 2区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY Basin Research Pub Date : 2024-07-14 DOI:10.1111/bre.12886
Alexandra Siebels, Johan ten Veen, Dirk Munsterman, Jef Deckers, Cornelis Kasse, Ronald van Balen
{"title":"Miocene sequences and depocentres in the Roer Valley Rift System","authors":"Alexandra Siebels,&nbsp;Johan ten Veen,&nbsp;Dirk Munsterman,&nbsp;Jef Deckers,&nbsp;Cornelis Kasse,&nbsp;Ronald van Balen","doi":"10.1111/bre.12886","DOIUrl":null,"url":null,"abstract":"<p>The Miocene sequence in the Roer Valley Rift System consists of alternating open-to-shallow marine, coastal and fluvio-deltaic deposits. In this study, well logs, bio-chronostratigraphy and seismostratigraphy are used to characterize major units and their bounding unconformities and to infer sediment dispersal patterns. Three major unconformities occur in the sequence: the early, middle and late Miocene unconformities (EMU, MMU and LMU). The EMU formed due to tectonic motions related to the Savian phase. After formation of the EMU, a broad depocentre developed in the south-eastern part of the Roer Valley Graben (RVG). Sediment accumulation increased during this period and peaked in the middle Langhian, after which it diminished again to a low level during the late Serravallian. The decrease in sediment accumulation coincided with a period of tectonic subsidence along the major bounding fault zones (i.e. the Peel Boundary Fault System, the Feldbiss Fault System and the Veldhoven Fault System). The resulting transgression caused sediment starvation in the central RVG. Subsequently, global sea-level fall during the early Tortonian caused large-scale erosion, and formation of incised valleys on the highs adjacent to the RVG (Peel Block and Campine Block), as well as the south-eastern RVG, forming the MMU. However, sedimentation continued during this period in the central part of the RVG where no erosional hiatus developed. From the Tortonian onwards, accumulation rates increased again. The depocentre shifted towards the north-west and clinoforms developed in the RVG. During the latest Miocene, the depocentre was concentrated along the south-western margin of the RVG. Meanwhile, the depositional environment of the entire RVRS gradually shallowed as the LMU was formed.</p>","PeriodicalId":8712,"journal":{"name":"Basin Research","volume":"36 4","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/bre.12886","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basin Research","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bre.12886","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The Miocene sequence in the Roer Valley Rift System consists of alternating open-to-shallow marine, coastal and fluvio-deltaic deposits. In this study, well logs, bio-chronostratigraphy and seismostratigraphy are used to characterize major units and their bounding unconformities and to infer sediment dispersal patterns. Three major unconformities occur in the sequence: the early, middle and late Miocene unconformities (EMU, MMU and LMU). The EMU formed due to tectonic motions related to the Savian phase. After formation of the EMU, a broad depocentre developed in the south-eastern part of the Roer Valley Graben (RVG). Sediment accumulation increased during this period and peaked in the middle Langhian, after which it diminished again to a low level during the late Serravallian. The decrease in sediment accumulation coincided with a period of tectonic subsidence along the major bounding fault zones (i.e. the Peel Boundary Fault System, the Feldbiss Fault System and the Veldhoven Fault System). The resulting transgression caused sediment starvation in the central RVG. Subsequently, global sea-level fall during the early Tortonian caused large-scale erosion, and formation of incised valleys on the highs adjacent to the RVG (Peel Block and Campine Block), as well as the south-eastern RVG, forming the MMU. However, sedimentation continued during this period in the central part of the RVG where no erosional hiatus developed. From the Tortonian onwards, accumulation rates increased again. The depocentre shifted towards the north-west and clinoforms developed in the RVG. During the latest Miocene, the depocentre was concentrated along the south-western margin of the RVG. Meanwhile, the depositional environment of the entire RVRS gradually shallowed as the LMU was formed.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
罗尔河谷裂谷系统的中新世序列和沉积中心
罗尔河谷裂谷系统的中新世层序由开阔至浅海、沿岸和河流三角洲沉积交替组成。在这项研究中,利用测井记录、生物-震层地层学和地震地层学来描述主要单元及其边界不整合层位的特征,并推断沉积物的散布模式。序列中有三个主要的不符层:早、中、晚中新世不符层(EMU、MMU 和 LMU)。EMU 是由于与萨维安阶段有关的构造运动而形成的。EMU 形成后,罗尔河谷地堑(RVG)的东南部形成了一个广泛的沉积中心。在此期间,沉积物堆积增加,并在朗格安中期达到顶峰,之后在塞拉瓦利安晚期再次减少到较低水平。沉积物堆积的减少与主要边界断层带(即皮尔边界断层系统、费尔德比斯断层系统和韦尔德霍芬断层系统)的构造沉降期相吻合。由此产生的横断造成了 RVG 中心沉积物匮乏。随后,托尔托尼早期的全球海平面下降造成了大规模的侵蚀,在 RVG 附近的高地(皮尔地块和坎皮恩地块)以及 RVG 东南部形成了切谷,形成了 MMU。不过,在这一时期,RVG 中部地区的沉积作用仍在继续,没有形成侵蚀间断。从托尔屯纪开始,堆积速度再次加快。沉积中心向西北方向移动,RVG 地区也出现了岩屑形态。在最近的中新世,沉积中心集中在 RVG 西南边缘。同时,随着 LMU 的形成,整个 RVRS 的沉积环境逐渐变浅。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Basin Research
Basin Research 地学-地球科学综合
CiteScore
7.00
自引率
9.40%
发文量
88
审稿时长
>12 weeks
期刊介绍: Basin Research is an international journal which aims to publish original, high impact research papers on sedimentary basin systems. We view integrated, interdisciplinary research as being essential for the advancement of the subject area; therefore, we do not seek manuscripts focused purely on sedimentology, structural geology, or geophysics that have a natural home in specialist journals. Rather, we seek manuscripts that treat sedimentary basins as multi-component systems that require a multi-faceted approach to advance our understanding of their development. During deposition and subsidence we are concerned with large-scale geodynamic processes, heat flow, fluid flow, strain distribution, seismic and sequence stratigraphy, modelling, burial and inversion histories. In addition, we view the development of the source area, in terms of drainage networks, climate, erosion, denudation and sediment routing systems as vital to sedimentary basin systems. The underpinning requirement is that a contribution should be of interest to earth scientists of more than one discipline.
期刊最新文献
Buried Pockmarks Associated With Listric Faults of Salt Minibasins (Espírito Santo, SE Brazil): Evidence for Local Hydrocarbon Escape Since the Miocene Serpentinite–Sediment Associations: Provenance Controlled by Competing Extensional–Contractional Tectonic Processes During the Evolution of the Northern Apennines (Eastern Elba Island, Tuscany) Kinematics of Submarine Channels in Response to Bank Failures Decoding Normal-Fault Controlled Trends in Stratigraphic Grain Size: Examples From the Kerinitis Gilbert-Type Delta, Greece From Circum Red Sea Sources to the Levant Basin Sink: An Integrated Provenance Study of Oligocene–Miocene Siliciclastic Sediments From Deep‐Sea Boreholes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1