Unveiling the distinctive mechanical and thermal properties of γ-GeSe

IF 13.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Nano Convergence Pub Date : 2024-07-15 DOI:10.1186/s40580-024-00436-3
Jinsub Park, Yugyeong Je, Joonho Kim, Je Myoung Park, Joong-Eon Jung, Hyeonsik Cheong, Sang Wook Lee, Kwanpyo Kim
{"title":"Unveiling the distinctive mechanical and thermal properties of γ-GeSe","authors":"Jinsub Park,&nbsp;Yugyeong Je,&nbsp;Joonho Kim,&nbsp;Je Myoung Park,&nbsp;Joong-Eon Jung,&nbsp;Hyeonsik Cheong,&nbsp;Sang Wook Lee,&nbsp;Kwanpyo Kim","doi":"10.1186/s40580-024-00436-3","DOIUrl":null,"url":null,"abstract":"<div><p>γ-GeSe is a newly identified polymorph among group-IV monochalcogenides, characterized by a distinctive interatomic bonding configuration. Despite its promising applications in electrical and thermal domains, the experimental verification of its mechanical and thermal properties remains unreported. Here, we experimentally characterize the in-plane Young’s modulus (<i>E</i>) and thermal conductivity (<span>\\(\\:\\kappa\\:\\)</span>) of γ-GeSe. The mechanical vibrational modes of freestanding γ-GeSe flakes are measured using optical interferometry. Nano-indentation via atomic force microscopy is also conducted to induce mechanical deformation and to extract the <i>E</i>. Comparison with finite-element simulations reveals that the <i>E</i> is 97.3<span>\\(\\:\\pm\\:\\)</span>7.5 GPa as determined by optical interferometry and 109.4<span>\\(\\:\\pm\\:\\)</span>13.5 GPa as established through the nano-indentation method. Additionally, optothermal Raman spectroscopy reveals that γ-GeSe has a lattice thermal conductivity of 2.3 <span>\\(\\:\\pm\\:\\)</span> 0.4 Wm<sup>−1</sup>K<sup>−1</sup> and a total thermal conductivity of 7.5 <span>\\(\\:\\pm\\:\\)</span> 0.4 Wm<sup>−1</sup>K<sup>−1</sup> in the in-plane direction at room temperature. The notably high <span>\\(\\:E/\\kappa\\:\\)</span> ratio in γ-GeSe, compared to other layered materials, underscores its distinctive structural and dynamic characteristics.</p></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"11 1","pages":""},"PeriodicalIF":13.4000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00436-3","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Convergence","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s40580-024-00436-3","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

γ-GeSe is a newly identified polymorph among group-IV monochalcogenides, characterized by a distinctive interatomic bonding configuration. Despite its promising applications in electrical and thermal domains, the experimental verification of its mechanical and thermal properties remains unreported. Here, we experimentally characterize the in-plane Young’s modulus (E) and thermal conductivity (\(\:\kappa\:\)) of γ-GeSe. The mechanical vibrational modes of freestanding γ-GeSe flakes are measured using optical interferometry. Nano-indentation via atomic force microscopy is also conducted to induce mechanical deformation and to extract the E. Comparison with finite-element simulations reveals that the E is 97.3\(\:\pm\:\)7.5 GPa as determined by optical interferometry and 109.4\(\:\pm\:\)13.5 GPa as established through the nano-indentation method. Additionally, optothermal Raman spectroscopy reveals that γ-GeSe has a lattice thermal conductivity of 2.3 \(\:\pm\:\) 0.4 Wm−1K−1 and a total thermal conductivity of 7.5 \(\:\pm\:\) 0.4 Wm−1K−1 in the in-plane direction at room temperature. The notably high \(\:E/\kappa\:\) ratio in γ-GeSe, compared to other layered materials, underscores its distinctive structural and dynamic characteristics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭示γ-GeSe独特的机械和热特性。
γ-锗硒是第四族单质中新发现的一种多晶体,具有独特的原子间成键构型。尽管γ-GeSe 在电学和热学领域有着广阔的应用前景,但其机械和热学特性的实验验证仍未见报道。在此,我们通过实验表征了 γ-GeSe 的面内杨氏模量(E)和热导率([公式:见正文])。我们使用光学干涉测量法测量了独立γ-GeSe 薄片的机械振动模式。与有限元模拟进行比较后发现,光学干涉仪测定的 E 值为 97.3[式:见正文]7.5GPa,纳米压痕法测定的 E 值为 109.4[式:见正文]13.5GPa。此外,光热拉曼光谱显示,γ-GeSe 在室温下的晶格热导率为 2.3 [式:见正文] 0.4 Wm-1K-1,面内方向的总热导率为 7.5 [式:见正文] 0.4 Wm-1K-1。与其他层状材料相比,γ-GeSe 的[计算公式:见正文]比率明显较高,这突显了其独特的结构和动态特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Convergence
Nano Convergence Engineering-General Engineering
CiteScore
15.90
自引率
2.60%
发文量
50
审稿时长
13 weeks
期刊介绍: Nano Convergence is an internationally recognized, peer-reviewed, and interdisciplinary journal designed to foster effective communication among scientists spanning diverse research areas closely aligned with nanoscience and nanotechnology. Dedicated to encouraging the convergence of technologies across the nano- to microscopic scale, the journal aims to unveil novel scientific domains and cultivate fresh research prospects. Operating on a single-blind peer-review system, Nano Convergence ensures transparency in the review process, with reviewers cognizant of authors' names and affiliations while maintaining anonymity in the feedback provided to authors.
期刊最新文献
Advances in materials and technologies for digital light processing 3D printing Simple and Cost-Effective Generation of 3D Cell Sheets and Spheroids Using Curvature-Controlled Paraffin Wax Substrates Multifunctional extracellular vesicles and edaravone-loaded scaffolds for kidney tissue regeneration by activating GDNF/RET pathway Highly sensitive multiplexed colorimetric lateral flow immunoassay by plasmon-controlled metal–silica isoform nanocomposites: PINs Designing injectable dermal matrix hydrogel combined with silver nanoparticles for methicillin-resistant Staphylococcus aureus infected wounds healing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1