Freestanding VO2 membranes on epidermal nanomesh for ultra-sensitive correlated breathable sensors

IF 13.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Nano Convergence Pub Date : 2025-02-07 DOI:10.1186/s40580-025-00476-3
Dongha Kim, Dongju Lee, Jiseok Park, Jihoon Bae, Aiping Chen, Judith L. MacManus-Driscoll, Sungwon Lee, Shinbuhm Lee
{"title":"Freestanding VO2 membranes on epidermal nanomesh for ultra-sensitive correlated breathable sensors","authors":"Dongha Kim,&nbsp;Dongju Lee,&nbsp;Jiseok Park,&nbsp;Jihoon Bae,&nbsp;Aiping Chen,&nbsp;Judith L. MacManus-Driscoll,&nbsp;Sungwon Lee,&nbsp;Shinbuhm Lee","doi":"10.1186/s40580-025-00476-3","DOIUrl":null,"url":null,"abstract":"<div><p>The interest in highly sensitive sensors is rapidly increasing for detecting very tiny signals for Internet of Things devices. Here, we achieve ultra-sensitive correlated breathable sensors based on freestanding VO<sub>2</sub> membranes. We fabricate the membranes by growing VO<sub>2</sub> films onto sacrificial Sr<sub>3</sub>Al<sub>2</sub>O<sub>6</sub> layer grown on SrTiO<sub>3</sub>, selectively dissolving the Sr<sub>3</sub>Al<sub>2</sub>O<sub>6</sub> in water, and then rendering freestanding VO<sub>2</sub> membrane on nanomesh. The nanomeshes are extremely flexible, sweat permeable, and readily skin-adhesive. The resistance of the VO<sub>2</sub> membranes is reversibly tuned by human’s tiny mechanical stimuli and breath stimuli. The stimuli modulate the Peierls dimerization of one-dimensional V−V chains in the VO<sub>2</sub> lattice which concomitantly controls the electron correlation and hence resistivity. Since our breathable sensors operate based on quantum-mechanical correlation effects, their sensitivity is 1−2 orders of magnitude higher than conventional tactile and respiratory sensors based on other materials. Thus, the freestanding membranes of correlated oxides on epidermal nanomeshes are multifunctional platforms for developing ultra-sensitive correlated breathable sensors.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"12 1","pages":""},"PeriodicalIF":13.4000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-025-00476-3","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Convergence","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s40580-025-00476-3","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The interest in highly sensitive sensors is rapidly increasing for detecting very tiny signals for Internet of Things devices. Here, we achieve ultra-sensitive correlated breathable sensors based on freestanding VO2 membranes. We fabricate the membranes by growing VO2 films onto sacrificial Sr3Al2O6 layer grown on SrTiO3, selectively dissolving the Sr3Al2O6 in water, and then rendering freestanding VO2 membrane on nanomesh. The nanomeshes are extremely flexible, sweat permeable, and readily skin-adhesive. The resistance of the VO2 membranes is reversibly tuned by human’s tiny mechanical stimuli and breath stimuli. The stimuli modulate the Peierls dimerization of one-dimensional V−V chains in the VO2 lattice which concomitantly controls the electron correlation and hence resistivity. Since our breathable sensors operate based on quantum-mechanical correlation effects, their sensitivity is 1−2 orders of magnitude higher than conventional tactile and respiratory sensors based on other materials. Thus, the freestanding membranes of correlated oxides on epidermal nanomeshes are multifunctional platforms for developing ultra-sensitive correlated breathable sensors.

Graphical Abstract

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Convergence
Nano Convergence Engineering-General Engineering
CiteScore
15.90
自引率
2.60%
发文量
50
审稿时长
13 weeks
期刊介绍: Nano Convergence is an internationally recognized, peer-reviewed, and interdisciplinary journal designed to foster effective communication among scientists spanning diverse research areas closely aligned with nanoscience and nanotechnology. Dedicated to encouraging the convergence of technologies across the nano- to microscopic scale, the journal aims to unveil novel scientific domains and cultivate fresh research prospects. Operating on a single-blind peer-review system, Nano Convergence ensures transparency in the review process, with reviewers cognizant of authors' names and affiliations while maintaining anonymity in the feedback provided to authors.
期刊最新文献
Freestanding VO2 membranes on epidermal nanomesh for ultra-sensitive correlated breathable sensors Current status of developed electrocatalysts for water splitting technologies: from experimental to industrial perspective Lung-homing nanoliposomes for early intervention in NETosis and inflammation during acute lung injury Enhanced high-energy proton radiation hardness of ZnO thin-film transistors with a passivation layer Correction: Engineering extracellular vesicles for ROS scavenging and tissue regeneration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1