Polarization and wavelength routers based on diffractive neural network.

IF 4.1 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Frontiers of Optoelectronics Pub Date : 2024-07-16 DOI:10.1007/s12200-024-00126-2
Xiaohong Lin, Yulan Fu, Kuo Zhang, Xinping Zhang, Shuai Feng, Xiaoyong Hu
{"title":"Polarization and wavelength routers based on diffractive neural network.","authors":"Xiaohong Lin, Yulan Fu, Kuo Zhang, Xinping Zhang, Shuai Feng, Xiaoyong Hu","doi":"10.1007/s12200-024-00126-2","DOIUrl":null,"url":null,"abstract":"<p><p>In the field of information processing, all-optical routers are significant for achieving high-speed, high-capacity signal processing and transmission. In this study, we developed three types of structurally simple and flexible routers using the deep diffractive neural network (D<sup>2</sup>NN), capable of routing incident light based on wavelength and polarization. First, we implemented a polarization router for routing two orthogonally polarized light beams. The second type is the wavelength router that can route light with wavelengths of 1550, 1300, and 1100 nm, demonstrating outstanding performance with insertion loss as low as 0.013 dB and an extinction ratio of up to 18.96 dB, while also maintaining excellent polarization preservation. The final router is the polarization-wavelength composite router, capable of routing six types of input light formed by pairwise combinations of three wavelengths (1550, 1300, and 1100 nm) and two orthogonal linearly polarized lights, thereby enhancing the information processing capability of the device. These devices feature compact structures, maintaining high contrast while exhibiting low loss and passive characteristics, making them suitable for integration into future optical components. This study introduces new avenues and methodologies to enhance performance and broaden the applications of future optical information processing systems.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":"17 1","pages":"22"},"PeriodicalIF":4.1000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11250754/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Optoelectronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12200-024-00126-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In the field of information processing, all-optical routers are significant for achieving high-speed, high-capacity signal processing and transmission. In this study, we developed three types of structurally simple and flexible routers using the deep diffractive neural network (D2NN), capable of routing incident light based on wavelength and polarization. First, we implemented a polarization router for routing two orthogonally polarized light beams. The second type is the wavelength router that can route light with wavelengths of 1550, 1300, and 1100 nm, demonstrating outstanding performance with insertion loss as low as 0.013 dB and an extinction ratio of up to 18.96 dB, while also maintaining excellent polarization preservation. The final router is the polarization-wavelength composite router, capable of routing six types of input light formed by pairwise combinations of three wavelengths (1550, 1300, and 1100 nm) and two orthogonal linearly polarized lights, thereby enhancing the information processing capability of the device. These devices feature compact structures, maintaining high contrast while exhibiting low loss and passive characteristics, making them suitable for integration into future optical components. This study introduces new avenues and methodologies to enhance performance and broaden the applications of future optical information processing systems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于衍射神经网络的偏振和波长路由器。
在信息处理领域,全光路由器对于实现高速、大容量信号处理和传输具有重要意义。在这项研究中,我们利用深度衍射神经网络(D2NN)开发了三种结构简单、灵活的路由器,能够根据波长和偏振对入射光进行路由。首先,我们实现了一个偏振路由器,用于路由两束正交偏振光。第二种是波长路由器,可路由波长为 1550、1300 和 1100 nm 的光,表现出出色的性能,插入损耗低至 0.013 dB,消光比高达 18.96 dB,同时还能保持出色的偏振保持性。最后一种路由器是偏振-波长复合路由器,能够路由三种波长(1550、1300 和 1100 nm)和两种正交线性偏振光成对组合形成的六种输入光,从而增强了器件的信息处理能力。这些器件结构紧凑,在保持高对比度的同时,还具有低损耗和无源特性,适合集成到未来的光学元件中。这项研究为提高未来光学信息处理系统的性能和拓宽其应用领域提供了新的途径和方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers of Optoelectronics
Frontiers of Optoelectronics ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
7.80
自引率
0.00%
发文量
583
期刊介绍: Frontiers of Optoelectronics seeks to provide a multidisciplinary forum for a broad mix of peer-reviewed academic papers in order to promote rapid communication and exchange between researchers in China and abroad. It introduces and reflects significant achievements being made in the field of photonics or optoelectronics. The topics include, but are not limited to, semiconductor optoelectronics, nano-photonics, information photonics, energy photonics, ultrafast photonics, biomedical photonics, nonlinear photonics, fiber optics, laser and terahertz technology and intelligent photonics. The journal publishes reviews, research articles, letters, comments, special issues and so on. Frontiers of Optoelectronics especially encourages papers from new emerging and multidisciplinary areas, papers reflecting the international trends of research and development, and on special topics reporting progress made in the field of optoelectronics. All published papers will reflect the original thoughts of researchers and practitioners on basic theories, design and new technology in optoelectronics. Frontiers of Optoelectronics is strictly peer-reviewed and only accepts original submissions in English. It is a fully OA journal and the APCs are covered by Higher Education Press and Huazhong University of Science and Technology. ● Presents the latest developments in optoelectronics and optics ● Emphasizes the latest developments of new optoelectronic materials, devices, systems and applications ● Covers industrial photonics, information photonics, biomedical photonics, energy photonics, laser and terahertz technology, and more
期刊最新文献
Correction: White light emission in 0D halide perovskite [(CH3)3S]2SnCl6·H2O crystals through variation of doping ns2 ions. Multi-octave two-color soliton frequency comb in integrated chalcogenide microresonators. Vehicular Mini-LED backlight display inspection based on residual global context mechanism. Plasma photonic crystal 'kaleidoscope' with flexible control of topology and electromagnetism. Information processing at the speed of light.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1