Heating–cooling–heating cycles within ca. 70 Myr recorded in UHT granulites in the Khondalite Belt, North China Craton

IF 3.2 2区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY Precambrian Research Pub Date : 2024-07-15 DOI:10.1016/j.precamres.2024.107508
Yang Qi , Shujuan Jiao , Lin Chen , Jiahui Liu , Yu Liu , Jinghui Guo
{"title":"Heating–cooling–heating cycles within ca. 70 Myr recorded in UHT granulites in the Khondalite Belt, North China Craton","authors":"Yang Qi ,&nbsp;Shujuan Jiao ,&nbsp;Lin Chen ,&nbsp;Jiahui Liu ,&nbsp;Yu Liu ,&nbsp;Jinghui Guo","doi":"10.1016/j.precamres.2024.107508","DOIUrl":null,"url":null,"abstract":"<div><p>Revealing the thermal evolution history of ultrahigh-temperature metamorphism (UHT) could help shed light on the genesis and evolution of the orogenic crust. However, it is generally difficult to constrain the duration of metamorphism, especially the heating stage due to the complex behavior of the datable accessory minerals (e.g., zircon and monazite). The Khondalite Belt of the North China Craton records Paleoproterozoic UHT metamorphic event which was previously constrained to be ca. 1920 Ma by using the weighted mean age of zircon U–Pb dating results, however, zircon could grow during both prograde and retrograde periods. Thus, the age of ca. 1920 Ma may be an oversimplified explanation and there could be a complex thermal evolution. In this study, combined with zircon U–Pb dating and Ti-in-zircon thermometry, the duration of the UHT metamorphism in the eastern Khondalite Belt was constrained to be 60–70 Myr with two short periods of decompression-heating (both lasting for ∼20 Myr) intervened by a period of cooling process (lasting for ∼30 Myr). This finding further expands our knowledge that there was a heating–cooling–heating cycle rather than a continuously prolonged cooling process in a long-lived UHT metamorphism. Our results show that the UHT metamorphism in the eastern Khondalite Belt requires two stages of lithosphere extension, which were possibly related to shallow slab breakoff and post-collisional lithospheric delamination, respectively. It further indicates that Paleoproterozoic orogenesis, although dominated by subduction of rheologically weak slab, is comparable to the formation of modern Himalaya orogens.</p></div>","PeriodicalId":49674,"journal":{"name":"Precambrian Research","volume":"411 ","pages":"Article 107508"},"PeriodicalIF":3.2000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precambrian Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301926824002213","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Revealing the thermal evolution history of ultrahigh-temperature metamorphism (UHT) could help shed light on the genesis and evolution of the orogenic crust. However, it is generally difficult to constrain the duration of metamorphism, especially the heating stage due to the complex behavior of the datable accessory minerals (e.g., zircon and monazite). The Khondalite Belt of the North China Craton records Paleoproterozoic UHT metamorphic event which was previously constrained to be ca. 1920 Ma by using the weighted mean age of zircon U–Pb dating results, however, zircon could grow during both prograde and retrograde periods. Thus, the age of ca. 1920 Ma may be an oversimplified explanation and there could be a complex thermal evolution. In this study, combined with zircon U–Pb dating and Ti-in-zircon thermometry, the duration of the UHT metamorphism in the eastern Khondalite Belt was constrained to be 60–70 Myr with two short periods of decompression-heating (both lasting for ∼20 Myr) intervened by a period of cooling process (lasting for ∼30 Myr). This finding further expands our knowledge that there was a heating–cooling–heating cycle rather than a continuously prolonged cooling process in a long-lived UHT metamorphism. Our results show that the UHT metamorphism in the eastern Khondalite Belt requires two stages of lithosphere extension, which were possibly related to shallow slab breakoff and post-collisional lithospheric delamination, respectively. It further indicates that Paleoproterozoic orogenesis, although dominated by subduction of rheologically weak slab, is comparable to the formation of modern Himalaya orogens.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
华北克拉通 Khondalite 带超高温花岗岩中记录的约 70 Myr 内的加热-冷却-加热周期
揭示超高温变质作用(UHT)的热演化历史有助于揭示造山地壳的成因和演化。然而,由于可确定日期的附属矿物(如锆石和独居石)的复杂行为,一般很难确定变质作用的持续时间,尤其是加热阶段。华北克拉通孔雀石带记录了古近纪超高温变质事件,根据加权平均年龄推算,该变质事件的时间约为1920Ma。然而,锆石在顺行期和逆行期都会生长。因此,约 1920 Ma 的年龄可能是一个过于简单的解释,可能存在复杂的热演化过程。在这项研究中,结合锆石U-Pb年代测定法和锆英钛测温法,东部箜达岩带超高温变质作用的持续时间被推定为60-70 Myr,其中有两个短的减压-加热期(均持续了20 Myr),中间有一个冷却期(持续了30 Myr)。这一发现进一步扩展了我们的知识,即在长寿命的超高温变质作用中,存在一个加热-冷却-加热的循环过程,而不是一个持续延长的冷却过程。我们的研究结果表明,东部箜达岩带的超高温变质作用需要两个阶段的岩石圈延伸,这两个阶段可能分别与浅板块断裂和碰撞后岩石圈脱层有关。这进一步表明,古近纪造山作用虽然以流变性弱的板块俯冲为主,但与现代喜马拉雅造山作用的形成相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Precambrian Research
Precambrian Research 地学-地球科学综合
CiteScore
7.20
自引率
28.90%
发文量
325
审稿时长
12 months
期刊介绍: Precambrian Research publishes studies on all aspects of the early stages of the composition, structure and evolution of the Earth and its planetary neighbours. With a focus on process-oriented and comparative studies, it covers, but is not restricted to, subjects such as: (1) Chemical, biological, biochemical and cosmochemical evolution; the origin of life; the evolution of the oceans and atmosphere; the early fossil record; palaeobiology; (2) Geochronology and isotope and elemental geochemistry; (3) Precambrian mineral deposits; (4) Geophysical aspects of the early Earth and Precambrian terrains; (5) Nature, formation and evolution of the Precambrian lithosphere and mantle including magmatic, depositional, metamorphic and tectonic processes. In addition, the editors particularly welcome integrated process-oriented studies that involve a combination of the above fields and comparative studies that demonstrate the effect of Precambrian evolution on Phanerozoic earth system processes. Regional and localised studies of Precambrian phenomena are considered appropriate only when the detail and quality allow illustration of a wider process, or when significant gaps in basic knowledge of a particular area can be filled.
期刊最新文献
Age and composition of the lithospheric mantle beneath Jiande, Zhejiang Province: Implications for crust-mantle co-evolution of the South China Block 2.08 Ga andesitic gneisses in the southwestern Yangtze Block: Unveiling new insights into its geological evolution Early Ediacaran Xueqiong ophiolite in the East Kunlun Orogen, northern Tibetan Plateau: Insights into the early evolution of the Proto-Tethys Ocean Editorial Board Preservation of igneous and metamorphic charnockites in the Paleoproterozoic Prøven Igneous Complex, Rinkian Orogen, central West Greenland
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1