Early Ediacaran Xueqiong ophiolite in the East Kunlun Orogen, northern Tibetan Plateau: Insights into the early evolution of the Proto-Tethys Ocean

IF 3.2 2区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY Precambrian Research Pub Date : 2024-12-02 DOI:10.1016/j.precamres.2024.107638
Qingxing Luo , Bo Hui , Yunpeng Dong , Dengfeng He , Shengsi Sun , Yuangang Yue , Xiang Ren , Bin Zhang , Rutao Zang , Yongcheng Li
{"title":"Early Ediacaran Xueqiong ophiolite in the East Kunlun Orogen, northern Tibetan Plateau: Insights into the early evolution of the Proto-Tethys Ocean","authors":"Qingxing Luo ,&nbsp;Bo Hui ,&nbsp;Yunpeng Dong ,&nbsp;Dengfeng He ,&nbsp;Shengsi Sun ,&nbsp;Yuangang Yue ,&nbsp;Xiang Ren ,&nbsp;Bin Zhang ,&nbsp;Rutao Zang ,&nbsp;Yongcheng Li","doi":"10.1016/j.precamres.2024.107638","DOIUrl":null,"url":null,"abstract":"<div><div>Reshaping the tectonic evolution of the Proto-Tethys Ocean is of paramount significance for comprehending the ocean-continent transitions since the Neoproterozoic. Nevertheless, the intricacies of this evolution, particularly during its early stage, remain a pivotal issue that needs further deciphering. The discovery of early Ediacaran ophiolites within the East Kunlun Orogen offers a crucial clue for exploring this issue. This study presents intergrade field geology, zircon U–Pb geochronology and whole-rock geochemistry on the related rocks from this specific ophiolite identified in the Xueqiong area, easternmost East Kunlun Orogen. Field investigations reveal the currently remaining dismembered Xueqiong ophiolite merely include gabbro, basalt and chert, which are in the form of tectonic blocks within an ophiolitic mélange. Zircon U–Pb dating results show that the gabbro samples from two near rock slices yield consistent weighted mean ages of 597 ± 5 Ma and 601 ± 2 Ma, whereas the basalt sample gives a similar age of 600 ± 6 Ma as well, indicating the magmatic component of the ophiolitic suite was formed at ca. 600 Ma during the early Ediacaran. Geochemical analysis indicates that all the gabbro and basalt share a common parental magma. Patterns of rare earth and trace elements show their properties between the enriched mid-ocean ridge basalt and oceanic island basalt models, along with their characteristic trace element covariances aligning with enriched mid-ocean ridge basalt, suggesting a mantle source similar to the enriched mid-ocean ridge basalt, with interaction with the residual asthenosphere mantle material. Relatively low SiO<sub>2</sub>, TFe<sub>2</sub>O<sub>3</sub> and MnO<sub>2</sub> contents and flat rare earth element patterns of chert, suggesting its lithogenic property and restricted basin setting near the continental margin. These findings collectively indicate that the Xueqiong ophiolite represents remnants of the oceanic lithosphere and overlying deep-sea sediments from the early-stage evolution of the Proto-Tethys Ocean, when the ocean evolution might not have been fully mature and oceanic floor sedimentation capable of receiving terrigenous detritus. This evidence further supports that the Proto-Tethys Ocean in the East Kunlun domain could be traced back at least to the early Ediacaran.</div></div>","PeriodicalId":49674,"journal":{"name":"Precambrian Research","volume":"417 ","pages":"Article 107638"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precambrian Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301926824003516","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Reshaping the tectonic evolution of the Proto-Tethys Ocean is of paramount significance for comprehending the ocean-continent transitions since the Neoproterozoic. Nevertheless, the intricacies of this evolution, particularly during its early stage, remain a pivotal issue that needs further deciphering. The discovery of early Ediacaran ophiolites within the East Kunlun Orogen offers a crucial clue for exploring this issue. This study presents intergrade field geology, zircon U–Pb geochronology and whole-rock geochemistry on the related rocks from this specific ophiolite identified in the Xueqiong area, easternmost East Kunlun Orogen. Field investigations reveal the currently remaining dismembered Xueqiong ophiolite merely include gabbro, basalt and chert, which are in the form of tectonic blocks within an ophiolitic mélange. Zircon U–Pb dating results show that the gabbro samples from two near rock slices yield consistent weighted mean ages of 597 ± 5 Ma and 601 ± 2 Ma, whereas the basalt sample gives a similar age of 600 ± 6 Ma as well, indicating the magmatic component of the ophiolitic suite was formed at ca. 600 Ma during the early Ediacaran. Geochemical analysis indicates that all the gabbro and basalt share a common parental magma. Patterns of rare earth and trace elements show their properties between the enriched mid-ocean ridge basalt and oceanic island basalt models, along with their characteristic trace element covariances aligning with enriched mid-ocean ridge basalt, suggesting a mantle source similar to the enriched mid-ocean ridge basalt, with interaction with the residual asthenosphere mantle material. Relatively low SiO2, TFe2O3 and MnO2 contents and flat rare earth element patterns of chert, suggesting its lithogenic property and restricted basin setting near the continental margin. These findings collectively indicate that the Xueqiong ophiolite represents remnants of the oceanic lithosphere and overlying deep-sea sediments from the early-stage evolution of the Proto-Tethys Ocean, when the ocean evolution might not have been fully mature and oceanic floor sedimentation capable of receiving terrigenous detritus. This evidence further supports that the Proto-Tethys Ocean in the East Kunlun domain could be traced back at least to the early Ediacaran.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
青藏高原北部东昆仑造山带早埃迪卡拉世雪琼蛇绿岩:对原特提斯洋早期演化的认识
重塑原特提斯洋的构造演化对认识新元古代以来的洋陆过渡具有重要意义。然而,这种演变的复杂性,特别是在其早期阶段,仍然是一个需要进一步破译的关键问题。东昆仑造山带早埃迪卡拉世蛇绿岩的发现为探讨这一问题提供了重要线索。本文对东昆仑造山带最东端雪琼地区某蛇绿岩相关岩石进行了综合野外地质、锆石U-Pb年代学和全岩地球化学研究。野外调查发现,目前残存的雪琼蛇绿岩仅包括辉长岩、玄武岩和燧石,它们在蛇绿岩范围内以构造块体的形式存在。锆石U-Pb定年结果表明,近2片辉长岩样品的加权平均年龄为597±5 Ma和601±2 Ma,玄武岩样品的加权平均年龄为600±6 Ma,表明蛇绿岩套的岩浆成分形成于早埃迪卡拉纪约600 Ma。地球化学分析表明,所有辉长岩和玄武岩具有共同的母岩浆。稀土和微量元素模式在富集洋中脊玄武岩和洋岛玄武岩模式之间表现出特征,微量元素协方差与富集洋中脊玄武岩一致,表明地幔源与富集洋中脊玄武岩相似,并与残余软流圈地幔物质相互作用。燧石的SiO2、TFe2O3和MnO2含量相对较低,稀土元素分布扁平,表明其造岩性质和靠近大陆边缘的局限盆地背景。综上所述,雪塘蛇绿岩代表了原特提斯洋早期演化的海洋岩石圈残余物和上覆的深海沉积物,当时海洋演化可能尚未完全成熟,海底沉积能够接收陆源碎屑。这一证据进一步支持了东昆仑域原特提斯洋至少可以追溯到埃迪卡拉纪早期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Precambrian Research
Precambrian Research 地学-地球科学综合
CiteScore
7.20
自引率
28.90%
发文量
325
审稿时长
12 months
期刊介绍: Precambrian Research publishes studies on all aspects of the early stages of the composition, structure and evolution of the Earth and its planetary neighbours. With a focus on process-oriented and comparative studies, it covers, but is not restricted to, subjects such as: (1) Chemical, biological, biochemical and cosmochemical evolution; the origin of life; the evolution of the oceans and atmosphere; the early fossil record; palaeobiology; (2) Geochronology and isotope and elemental geochemistry; (3) Precambrian mineral deposits; (4) Geophysical aspects of the early Earth and Precambrian terrains; (5) Nature, formation and evolution of the Precambrian lithosphere and mantle including magmatic, depositional, metamorphic and tectonic processes. In addition, the editors particularly welcome integrated process-oriented studies that involve a combination of the above fields and comparative studies that demonstrate the effect of Precambrian evolution on Phanerozoic earth system processes. Regional and localised studies of Precambrian phenomena are considered appropriate only when the detail and quality allow illustration of a wider process, or when significant gaps in basic knowledge of a particular area can be filled.
期刊最新文献
Age and composition of the lithospheric mantle beneath Jiande, Zhejiang Province: Implications for crust-mantle co-evolution of the South China Block 2.08 Ga andesitic gneisses in the southwestern Yangtze Block: Unveiling new insights into its geological evolution Early Ediacaran Xueqiong ophiolite in the East Kunlun Orogen, northern Tibetan Plateau: Insights into the early evolution of the Proto-Tethys Ocean Editorial Board Preservation of igneous and metamorphic charnockites in the Paleoproterozoic Prøven Igneous Complex, Rinkian Orogen, central West Greenland
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1