Early Ediacaran Xueqiong ophiolite in the East Kunlun Orogen, northern Tibetan Plateau: Insights into the early evolution of the Proto-Tethys Ocean

IF 3.2 2区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY Precambrian Research Pub Date : 2024-12-02 DOI:10.1016/j.precamres.2024.107638
Qingxing Luo , Bo Hui , Yunpeng Dong , Dengfeng He , Shengsi Sun , Yuangang Yue , Xiang Ren , Bin Zhang , Rutao Zang , Yongcheng Li
{"title":"Early Ediacaran Xueqiong ophiolite in the East Kunlun Orogen, northern Tibetan Plateau: Insights into the early evolution of the Proto-Tethys Ocean","authors":"Qingxing Luo ,&nbsp;Bo Hui ,&nbsp;Yunpeng Dong ,&nbsp;Dengfeng He ,&nbsp;Shengsi Sun ,&nbsp;Yuangang Yue ,&nbsp;Xiang Ren ,&nbsp;Bin Zhang ,&nbsp;Rutao Zang ,&nbsp;Yongcheng Li","doi":"10.1016/j.precamres.2024.107638","DOIUrl":null,"url":null,"abstract":"<div><div>Reshaping the tectonic evolution of the Proto-Tethys Ocean is of paramount significance for comprehending the ocean-continent transitions since the Neoproterozoic. Nevertheless, the intricacies of this evolution, particularly during its early stage, remain a pivotal issue that needs further deciphering. The discovery of early Ediacaran ophiolites within the East Kunlun Orogen offers a crucial clue for exploring this issue. This study presents intergrade field geology, zircon U–Pb geochronology and whole-rock geochemistry on the related rocks from this specific ophiolite identified in the Xueqiong area, easternmost East Kunlun Orogen. Field investigations reveal the currently remaining dismembered Xueqiong ophiolite merely include gabbro, basalt and chert, which are in the form of tectonic blocks within an ophiolitic mélange. Zircon U–Pb dating results show that the gabbro samples from two near rock slices yield consistent weighted mean ages of 597 ± 5 Ma and 601 ± 2 Ma, whereas the basalt sample gives a similar age of 600 ± 6 Ma as well, indicating the magmatic component of the ophiolitic suite was formed at ca. 600 Ma during the early Ediacaran. Geochemical analysis indicates that all the gabbro and basalt share a common parental magma. Patterns of rare earth and trace elements show their properties between the enriched mid-ocean ridge basalt and oceanic island basalt models, along with their characteristic trace element covariances aligning with enriched mid-ocean ridge basalt, suggesting a mantle source similar to the enriched mid-ocean ridge basalt, with interaction with the residual asthenosphere mantle material. Relatively low SiO<sub>2</sub>, TFe<sub>2</sub>O<sub>3</sub> and MnO<sub>2</sub> contents and flat rare earth element patterns of chert, suggesting its lithogenic property and restricted basin setting near the continental margin. These findings collectively indicate that the Xueqiong ophiolite represents remnants of the oceanic lithosphere and overlying deep-sea sediments from the early-stage evolution of the Proto-Tethys Ocean, when the ocean evolution might not have been fully mature and oceanic floor sedimentation capable of receiving terrigenous detritus. This evidence further supports that the Proto-Tethys Ocean in the East Kunlun domain could be traced back at least to the early Ediacaran.</div></div>","PeriodicalId":49674,"journal":{"name":"Precambrian Research","volume":"417 ","pages":"Article 107638"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precambrian Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301926824003516","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Reshaping the tectonic evolution of the Proto-Tethys Ocean is of paramount significance for comprehending the ocean-continent transitions since the Neoproterozoic. Nevertheless, the intricacies of this evolution, particularly during its early stage, remain a pivotal issue that needs further deciphering. The discovery of early Ediacaran ophiolites within the East Kunlun Orogen offers a crucial clue for exploring this issue. This study presents intergrade field geology, zircon U–Pb geochronology and whole-rock geochemistry on the related rocks from this specific ophiolite identified in the Xueqiong area, easternmost East Kunlun Orogen. Field investigations reveal the currently remaining dismembered Xueqiong ophiolite merely include gabbro, basalt and chert, which are in the form of tectonic blocks within an ophiolitic mélange. Zircon U–Pb dating results show that the gabbro samples from two near rock slices yield consistent weighted mean ages of 597 ± 5 Ma and 601 ± 2 Ma, whereas the basalt sample gives a similar age of 600 ± 6 Ma as well, indicating the magmatic component of the ophiolitic suite was formed at ca. 600 Ma during the early Ediacaran. Geochemical analysis indicates that all the gabbro and basalt share a common parental magma. Patterns of rare earth and trace elements show their properties between the enriched mid-ocean ridge basalt and oceanic island basalt models, along with their characteristic trace element covariances aligning with enriched mid-ocean ridge basalt, suggesting a mantle source similar to the enriched mid-ocean ridge basalt, with interaction with the residual asthenosphere mantle material. Relatively low SiO2, TFe2O3 and MnO2 contents and flat rare earth element patterns of chert, suggesting its lithogenic property and restricted basin setting near the continental margin. These findings collectively indicate that the Xueqiong ophiolite represents remnants of the oceanic lithosphere and overlying deep-sea sediments from the early-stage evolution of the Proto-Tethys Ocean, when the ocean evolution might not have been fully mature and oceanic floor sedimentation capable of receiving terrigenous detritus. This evidence further supports that the Proto-Tethys Ocean in the East Kunlun domain could be traced back at least to the early Ediacaran.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Precambrian Research
Precambrian Research 地学-地球科学综合
CiteScore
7.20
自引率
28.90%
发文量
325
审稿时长
12 months
期刊介绍: Precambrian Research publishes studies on all aspects of the early stages of the composition, structure and evolution of the Earth and its planetary neighbours. With a focus on process-oriented and comparative studies, it covers, but is not restricted to, subjects such as: (1) Chemical, biological, biochemical and cosmochemical evolution; the origin of life; the evolution of the oceans and atmosphere; the early fossil record; palaeobiology; (2) Geochronology and isotope and elemental geochemistry; (3) Precambrian mineral deposits; (4) Geophysical aspects of the early Earth and Precambrian terrains; (5) Nature, formation and evolution of the Precambrian lithosphere and mantle including magmatic, depositional, metamorphic and tectonic processes. In addition, the editors particularly welcome integrated process-oriented studies that involve a combination of the above fields and comparative studies that demonstrate the effect of Precambrian evolution on Phanerozoic earth system processes. Regional and localised studies of Precambrian phenomena are considered appropriate only when the detail and quality allow illustration of a wider process, or when significant gaps in basic knowledge of a particular area can be filled.
期刊最新文献
Age and composition of the lithospheric mantle beneath Jiande, Zhejiang Province: Implications for crust-mantle co-evolution of the South China Block 2.08 Ga andesitic gneisses in the southwestern Yangtze Block: Unveiling new insights into its geological evolution Early Ediacaran Xueqiong ophiolite in the East Kunlun Orogen, northern Tibetan Plateau: Insights into the early evolution of the Proto-Tethys Ocean Editorial Board Preservation of igneous and metamorphic charnockites in the Paleoproterozoic Prøven Igneous Complex, Rinkian Orogen, central West Greenland
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1