{"title":"Identifying rice field weeds from unmanned aerial vehicle remote sensing imagery using deep learning.","authors":"Zhonghui Guo, Dongdong Cai, Yunyi Zhou, Tongyu Xu, Fenghua Yu","doi":"10.1186/s13007-024-01232-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Rice field weed object detection can provide key information on weed species and locations for precise spraying, which is of great significance in actual agricultural production. However, facing the complex and changing real farm environments, traditional object detection methods still have difficulties in identifying small-sized, occluded and densely distributed weed instances. To address these problems, this paper proposes a multi-scale feature enhanced DETR network, named RMS-DETR. By adding multi-scale feature extraction branches on top of DETR, this model fully utilizes the information from different semantic feature layers to improve recognition capability for rice field weeds in real-world scenarios.</p><p><strong>Methods: </strong>Introducing multi-scale feature layers on the basis of the DETR model, we conduct a differentiated design for different semantic feature layers. The high-level semantic feature layer adopts Transformer structure to extract contextual information between barnyard grass and rice plants. The low-level semantic feature layer uses CNN structure to extract local detail features of barnyard grass. Introducing multi-scale feature layers inevitably leads to increased model computation, thus lowering model inference speed. Therefore, we employ a new type of Pconv (Partial convolution) to replace traditional standard convolutions in the model.</p><p><strong>Results: </strong>Compared to the original DETR model, our proposed RMS-DETR model achieved an average recognition accuracy improvement of 3.6% and 4.4% on our constructed rice field weeds dataset and the DOTA public dataset, respectively. The average recognition accuracies reached 0.792 and 0.851, respectively. The RMS-DETR model size is 40.8 M with inference time of 0.0081 s. Compared with three classical DETR models (Deformable DETR, Anchor DETR and DAB-DETR), the RMS-DETR model respectively improved average precision by 2.1%, 4.9% and 2.4%.</p><p><strong>Discussion: </strong>This model is capable of accurately identifying rice field weeds in complex real-world scenarios, thus providing key technical support for precision spraying and management of variable-rate spraying systems.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"20 1","pages":"105"},"PeriodicalIF":4.7000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11253438/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-024-01232-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Rice field weed object detection can provide key information on weed species and locations for precise spraying, which is of great significance in actual agricultural production. However, facing the complex and changing real farm environments, traditional object detection methods still have difficulties in identifying small-sized, occluded and densely distributed weed instances. To address these problems, this paper proposes a multi-scale feature enhanced DETR network, named RMS-DETR. By adding multi-scale feature extraction branches on top of DETR, this model fully utilizes the information from different semantic feature layers to improve recognition capability for rice field weeds in real-world scenarios.
Methods: Introducing multi-scale feature layers on the basis of the DETR model, we conduct a differentiated design for different semantic feature layers. The high-level semantic feature layer adopts Transformer structure to extract contextual information between barnyard grass and rice plants. The low-level semantic feature layer uses CNN structure to extract local detail features of barnyard grass. Introducing multi-scale feature layers inevitably leads to increased model computation, thus lowering model inference speed. Therefore, we employ a new type of Pconv (Partial convolution) to replace traditional standard convolutions in the model.
Results: Compared to the original DETR model, our proposed RMS-DETR model achieved an average recognition accuracy improvement of 3.6% and 4.4% on our constructed rice field weeds dataset and the DOTA public dataset, respectively. The average recognition accuracies reached 0.792 and 0.851, respectively. The RMS-DETR model size is 40.8 M with inference time of 0.0081 s. Compared with three classical DETR models (Deformable DETR, Anchor DETR and DAB-DETR), the RMS-DETR model respectively improved average precision by 2.1%, 4.9% and 2.4%.
Discussion: This model is capable of accurately identifying rice field weeds in complex real-world scenarios, thus providing key technical support for precision spraying and management of variable-rate spraying systems.
期刊介绍:
Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences.
There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics.
Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.