{"title":"Apnet: Lightweight network for apricot tree disease and pest detection in real-world complex backgrounds.","authors":"Minglang Li, Zhiyong Tao, Wentao Yan, Sen Lin, Kaihao Feng, Zeyi Zhang, Yurong Jing","doi":"10.1186/s13007-025-01324-5","DOIUrl":null,"url":null,"abstract":"<p><p>Apricot trees, serving as critical agricultural resources, hold a significant role within the agricultural domain. Conventional methods for detecting pests and diseases in these trees are notably labor-intensive. Many conditions affecting apricot trees manifest distinct visual symptoms that are ideally suited for precise identification and classification via deep learning techniques. Despite this, the academic realm currently lacks extensive, realistic datasets and deep learning strategies specifically crafted for apricot trees. This study introduces ATZD01, a publicly accessible dataset encompassing 11 categories of apricot tree pests and diseases, meticulously compiled under genuine field conditions. Furthermore, we introduce an innovative detection algorithm founded on convolutional neural networks, specifically devised for the management of apricot tree pests and diseases. To enhance the accuracy of detection, we have developed a novel object detection framework, APNet, alongside a dedicated module, the Adaptive Thresholding Algorithm (ATA), tailored for the detection of apricot tree afflictions. Experimental evaluations reveal that our proposed algorithm attains an accuracy rate of 87.1% on ATZD01, surpassing the performance of all other leading algorithms tested, thereby affirming the effectiveness of our dataset and model. The code and dataset will be made available at https://github.com/meanlang/ATZD01 .</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"21 1","pages":"4"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11721285/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-025-01324-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Apricot trees, serving as critical agricultural resources, hold a significant role within the agricultural domain. Conventional methods for detecting pests and diseases in these trees are notably labor-intensive. Many conditions affecting apricot trees manifest distinct visual symptoms that are ideally suited for precise identification and classification via deep learning techniques. Despite this, the academic realm currently lacks extensive, realistic datasets and deep learning strategies specifically crafted for apricot trees. This study introduces ATZD01, a publicly accessible dataset encompassing 11 categories of apricot tree pests and diseases, meticulously compiled under genuine field conditions. Furthermore, we introduce an innovative detection algorithm founded on convolutional neural networks, specifically devised for the management of apricot tree pests and diseases. To enhance the accuracy of detection, we have developed a novel object detection framework, APNet, alongside a dedicated module, the Adaptive Thresholding Algorithm (ATA), tailored for the detection of apricot tree afflictions. Experimental evaluations reveal that our proposed algorithm attains an accuracy rate of 87.1% on ATZD01, surpassing the performance of all other leading algorithms tested, thereby affirming the effectiveness of our dataset and model. The code and dataset will be made available at https://github.com/meanlang/ATZD01 .
期刊介绍:
Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences.
There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics.
Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.