Antonio D’Abbruzzo, Donato Farina, Vittorio Giovannetti
{"title":"Recovering Complete Positivity of Non-Markovian Quantum Dynamics with Choi-Proximity Regularization","authors":"Antonio D’Abbruzzo, Donato Farina, Vittorio Giovannetti","doi":"10.1103/physrevx.14.031010","DOIUrl":null,"url":null,"abstract":"A relevant problem in the theory of open quantum systems is the lack of complete positivity of dynamical maps obtained after weak-coupling approximations, a famous example being the Redfield master equation. A number of approaches exist to recover well-defined evolutions under additional Markovian assumptions, but much less is known beyond this regime. Here, we propose a numerical method to cure the complete-positivity violation issue while preserving the non-Markovian features of an arbitrary original dynamical map. The idea is to replace its unphysical Choi operator with its closest physical one, mimicking recent work on quantum process tomography. We also show that the regularized dynamics is more accurate in terms of reproducing the exact dynamics, which allows us to heuristically push the utilization of these master equations in moderate coupling regimes, where the loss of positivity can have a relevant impact.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":null,"pages":null},"PeriodicalIF":11.6000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.14.031010","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A relevant problem in the theory of open quantum systems is the lack of complete positivity of dynamical maps obtained after weak-coupling approximations, a famous example being the Redfield master equation. A number of approaches exist to recover well-defined evolutions under additional Markovian assumptions, but much less is known beyond this regime. Here, we propose a numerical method to cure the complete-positivity violation issue while preserving the non-Markovian features of an arbitrary original dynamical map. The idea is to replace its unphysical Choi operator with its closest physical one, mimicking recent work on quantum process tomography. We also show that the regularized dynamics is more accurate in terms of reproducing the exact dynamics, which allows us to heuristically push the utilization of these master equations in moderate coupling regimes, where the loss of positivity can have a relevant impact.
期刊介绍:
Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.