{"title":"A Theoretical Investigation of Coal Fracture Evolution with Hydrostatic Pressure and its Validation by CT","authors":"Changxin Zhao, Yuanping Cheng, Wei Li, Liang Wang, Zhuang Lu, Hao Wang","doi":"10.1007/s11053-024-10381-x","DOIUrl":null,"url":null,"abstract":"<p>The stress-induced evolution of coal fractures significantly affects permeability and, consequently, gas extraction efficiency. This study introduces a novel coal fracture evolution model based on assumptions of fracture morphology and log-normal distribution of fracture aspect ratio. This model offers a theoretical framework for understanding the fracture closure process, ultimately depicting fracture evolution as a combined result of elastic compression and closure. It predicts the decay curve of fracture porosity under hydrostatic pressure loading. We conducted uniaxial compression experiments for determining the mechanical parameters of the model and in situ CT experiments with confining pressure ranging from 0 to 25 MPa for validating the model. The findings indicate the following: (1) Initially, the decline in fracture porosity with stress is predominantly due to elastic compression, followed by a rapid transition to closure. (2) Sensitivity analysis reveals that an increase in two physical quantities—the cube root of the product of the peak aspect ratio and the square of the mean aspect ratio (<i>x</i><sub><i>c</i></sub>) and the bulk modulus of the coal matrix (<i>K</i><sub><i>m</i></sub>)—results in a decrease in the rate of fracture porosity decay with stress. (3) Tectonic action has a dual effect of augmenting <i>x</i><sub><i>c</i></sub> and diminishing <i>K</i><sub><i>m</i></sub>. We define the magnification of <i>x</i><sub><i>c</i></sub> and the divisor of <i>K</i><sub><i>m</i></sub> under a common term—scaling factor. When the scaling factor of <i>x</i><sub><i>c</i></sub> is less than that of <i>K</i><sub><i>m</i></sub>, the tectonic action promotes the decay of porosity with stress. Conversely, when the scaling factor of <i>x</i><sub><i>c</i></sub> is greater than that of <i>K</i><sub><i>m</i></sub>, the effect is reversed.</p>","PeriodicalId":54284,"journal":{"name":"Natural Resources Research","volume":"6 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11053-024-10381-x","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The stress-induced evolution of coal fractures significantly affects permeability and, consequently, gas extraction efficiency. This study introduces a novel coal fracture evolution model based on assumptions of fracture morphology and log-normal distribution of fracture aspect ratio. This model offers a theoretical framework for understanding the fracture closure process, ultimately depicting fracture evolution as a combined result of elastic compression and closure. It predicts the decay curve of fracture porosity under hydrostatic pressure loading. We conducted uniaxial compression experiments for determining the mechanical parameters of the model and in situ CT experiments with confining pressure ranging from 0 to 25 MPa for validating the model. The findings indicate the following: (1) Initially, the decline in fracture porosity with stress is predominantly due to elastic compression, followed by a rapid transition to closure. (2) Sensitivity analysis reveals that an increase in two physical quantities—the cube root of the product of the peak aspect ratio and the square of the mean aspect ratio (xc) and the bulk modulus of the coal matrix (Km)—results in a decrease in the rate of fracture porosity decay with stress. (3) Tectonic action has a dual effect of augmenting xc and diminishing Km. We define the magnification of xc and the divisor of Km under a common term—scaling factor. When the scaling factor of xc is less than that of Km, the tectonic action promotes the decay of porosity with stress. Conversely, when the scaling factor of xc is greater than that of Km, the effect is reversed.
期刊介绍:
This journal publishes quantitative studies of natural (mainly but not limited to mineral) resources exploration, evaluation and exploitation, including environmental and risk-related aspects. Typical articles use geoscientific data or analyses to assess, test, or compare resource-related aspects. NRR covers a wide variety of resources including minerals, coal, hydrocarbon, geothermal, water, and vegetation. Case studies are welcome.