A Novel Framework for Optimizing the Prediction of Areas Favorable to Porphyry-Cu Mineralization: Combination of Ant Colony and Grid Search Optimization Algorithms with Support Vector Machines
{"title":"A Novel Framework for Optimizing the Prediction of Areas Favorable to Porphyry-Cu Mineralization: Combination of Ant Colony and Grid Search Optimization Algorithms with Support Vector Machines","authors":"Sarina Akbari, Hamidreza Ramazi, Reza Ghezelbash","doi":"10.1007/s11053-024-10431-4","DOIUrl":null,"url":null,"abstract":"<p>In the realm of mineral prospectivity mapping, a novel hybrid approach for optimizing hyperparameters of the support vector machine (SVM) algorithm is proposed here. The concept of ant colony optimization (ACO) algorithm, inspired by collective intelligence of ant colonies, and grid search (GS) that systematically evaluate all hyperparameter combinations to find the optimal model configuration are leveraged to fine-tune SVM parameters, enhancing its predictive capabilities. A dataset comprising geophysical, geochemical, geological, tectonic, and remote sensing evidence layers from the Sardouyeh region in Kerman province, Iran, is utilized for model development aimed the prediction of areas favorable for porphyry-Cu mineralization. After generating the regular and tuned predictive models, a comparison was carried out using quantitative performance metrics such as confusion matrix and success rate curves. The results demonstrated that the optimized versions of SVM using ACO (ACO–SVM) and GS (GS–SVM) models exhibit superior performance, achieving better accuracy and predictive capability in identifying locations favorable for porphyry-Cu mineralization. The study highlights the potential of incorporating optimization algorithms, especially ACO, into SVM, leading to the development of more effective predictive models for mineral prospectivity mapping.</p>","PeriodicalId":54284,"journal":{"name":"Natural Resources Research","volume":"9 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11053-024-10431-4","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In the realm of mineral prospectivity mapping, a novel hybrid approach for optimizing hyperparameters of the support vector machine (SVM) algorithm is proposed here. The concept of ant colony optimization (ACO) algorithm, inspired by collective intelligence of ant colonies, and grid search (GS) that systematically evaluate all hyperparameter combinations to find the optimal model configuration are leveraged to fine-tune SVM parameters, enhancing its predictive capabilities. A dataset comprising geophysical, geochemical, geological, tectonic, and remote sensing evidence layers from the Sardouyeh region in Kerman province, Iran, is utilized for model development aimed the prediction of areas favorable for porphyry-Cu mineralization. After generating the regular and tuned predictive models, a comparison was carried out using quantitative performance metrics such as confusion matrix and success rate curves. The results demonstrated that the optimized versions of SVM using ACO (ACO–SVM) and GS (GS–SVM) models exhibit superior performance, achieving better accuracy and predictive capability in identifying locations favorable for porphyry-Cu mineralization. The study highlights the potential of incorporating optimization algorithms, especially ACO, into SVM, leading to the development of more effective predictive models for mineral prospectivity mapping.
期刊介绍:
This journal publishes quantitative studies of natural (mainly but not limited to mineral) resources exploration, evaluation and exploitation, including environmental and risk-related aspects. Typical articles use geoscientific data or analyses to assess, test, or compare resource-related aspects. NRR covers a wide variety of resources including minerals, coal, hydrocarbon, geothermal, water, and vegetation. Case studies are welcome.