Oxygen-Vacancy-Assisted Dual Functional Surface Coatings Suppressing Irreversible Phase Transition of Li-Rich Layered Oxide Cathodes

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-07-17 DOI:10.1002/adfm.202400670
Qinting Jiang, Xifei Li, Youchen Hao, Jiaxuan Zuo, Ruixian Duan, Jun Li, Guiqiang Cao, Jingjing Wang, Jing Wang, Ming Li, Xuan Yang, Mengjiao Li, Wenbin Li, Yukun Xi, Jianhua Zhang, Wei Xiao
{"title":"Oxygen-Vacancy-Assisted Dual Functional Surface Coatings Suppressing Irreversible Phase Transition of Li-Rich Layered Oxide Cathodes","authors":"Qinting Jiang, Xifei Li, Youchen Hao, Jiaxuan Zuo, Ruixian Duan, Jun Li, Guiqiang Cao, Jingjing Wang, Jing Wang, Ming Li, Xuan Yang, Mengjiao Li, Wenbin Li, Yukun Xi, Jianhua Zhang, Wei Xiao","doi":"10.1002/adfm.202400670","DOIUrl":null,"url":null,"abstract":"Both lattice oxygen release and the migration of transition metal (TM) ions challenge the cyclability of Li-rich Mn-based layered oxide (LMO) cathodes by inducing irreversible phase transitions. In this work, the oxygen-vacancy-assisted dual functional surface coatings of Li-rich layered oxide cathodes, including a spinel-over-phase and a Li<sub>3</sub>PO<sub>4</sub> layer are fabricated for lithium-ion batteries (LIBs). The functional role of the optimized interface is mainly focused. Specifically, during the process of reorganized surface structure, the oxygen vacancies function as active sites for migrating TM ions to form the spinel over-phase and deliver the decreased binding energy of PO<sub>4</sub><sup>3−</sup> on the LMO surface. It is found that the Li<sub>3</sub>PO<sub>4</sub> layer increases the migration energy barrier of TM ions to 13.38 eV (7.62 eV for LMO). As a result, both the spinel over-phase and the Li<sub>3</sub>PO<sub>4</sub> layer synergistically inhibited the irreversible phase transitions of LMO upon cycling to boost lithium storage of the cathodes. The optimized cathode maintained higher capacity retention of 95% at 0.2 C after 200 cycles in comparison to 67% for the pristine LMO. This study provides some understanding of the functional roles of the optimized dual surface coatings in suppressing the irreversible phase transition of LMO for LIBs.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202400670","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Both lattice oxygen release and the migration of transition metal (TM) ions challenge the cyclability of Li-rich Mn-based layered oxide (LMO) cathodes by inducing irreversible phase transitions. In this work, the oxygen-vacancy-assisted dual functional surface coatings of Li-rich layered oxide cathodes, including a spinel-over-phase and a Li3PO4 layer are fabricated for lithium-ion batteries (LIBs). The functional role of the optimized interface is mainly focused. Specifically, during the process of reorganized surface structure, the oxygen vacancies function as active sites for migrating TM ions to form the spinel over-phase and deliver the decreased binding energy of PO43− on the LMO surface. It is found that the Li3PO4 layer increases the migration energy barrier of TM ions to 13.38 eV (7.62 eV for LMO). As a result, both the spinel over-phase and the Li3PO4 layer synergistically inhibited the irreversible phase transitions of LMO upon cycling to boost lithium storage of the cathodes. The optimized cathode maintained higher capacity retention of 95% at 0.2 C after 200 cycles in comparison to 67% for the pristine LMO. This study provides some understanding of the functional roles of the optimized dual surface coatings in suppressing the irreversible phase transition of LMO for LIBs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氧-空穴辅助双功能表面涂层抑制富锂层氧化物阴极的不可逆相变
晶格氧的释放和过渡金属(TM)离子的迁移都会诱发不可逆的相变,从而对富锂锰基层状氧化物(LMO)阴极的可循环性提出挑战。在这项研究中,我们为锂离子电池(LIB)制作了富锂层状氧化物阴极的氧空穴辅助双功能表面涂层,包括尖晶石过相层和 Li3PO4 层。优化界面的功能作用主要集中在此。具体来说,在重组表面结构的过程中,氧空位作为 TM 离子迁移的活性位点,形成尖晶石过相,并降低了 PO43- 在 LMO 表面的结合能。研究发现,Li3PO4 层将 TM 离子的迁移能垒提高到 13.38 eV(LMO 为 7.62 eV)。因此,尖晶石过相和 Li3PO4 层协同抑制了 LMO 在循环过程中的不可逆相变,从而提高了阴极的锂存储量。与原始 LMO 的 67% 相比,优化后的阴极在 0.2 C 循环 200 次后仍能保持较高的容量保持率,达到 95%。这项研究使人们对优化的双表面涂层在抑制 LMO 的不可逆相变方面的功能作用有了一定的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Hierarchical Yolk‐Shell Silicon/Carbon Anode Materials Enhanced by Vertical Graphene Sheets for Commercial Lithium‐Ion Battery Applications Unique Energy-Storage Behavior Driven by High Entropy in Metallic Glasses Enhancing Built-In Electric Field via Defect-Mediated Interfacial Chemical Bond Construction in Chalcogenide Heterojunction for Alcohol Photooxidation Coupled with H2 Production Piezoelectric Ceramic Hardening Through Defect Distribution Optimization in Multicomponent Systems Pyroptosis of Breast Cancer Stem Cells and Immune Activation Enabled by a Multifunctional Prodrug Photosensitizer (Adv. Funct. Mater. 37/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1