{"title":"Fetal progenitor cells for treatment of chronic limb ischemia.","authors":"Oleksandr Kukharchuk, Abhijit Bopardikar, Padma Priya Anand Baskaran, Andrii Kukharchuk, Rohit Kulkarni, Ranjit Ranbhor","doi":"10.62347/MZKI8393","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>This study investigated the therapeutic potential of fetal progenitor cells (FPCs) in the treatment of chronic non-healing wounds and ulcers associated with chronic limb ischemia (CLI). The research aimed to elucidate the mechanism of action of FPCs and evaluate their efficacy and safety in CLI patients.</p><p><strong>Methods: </strong>The researchers isolated FPCs from aborted human fetal liver, brain, and skin tissues and thoroughly characterized them. The preclinical phase of the study involved assessing the effects of FPCs in a rat model of CLI. Subsequently, a randomized controlled clinical trial was conducted to compare the efficacy of FPCs with standard treatment and autologous bone marrow mononuclear cells in CLI patients. The clinical trial lasted 12 months, with a follow-up period of 24-36 months. The primary outcomes included wound healing, frequency of major and minor amputations, pain reduction, and the incidence of complications. Secondary outcomes involved changes in local hemodynamics and histological, ultrastructural, and immunohistochemical assessments of angiogenesis.</p><p><strong>Results: </strong>In the animal model, FPC treatment significantly enhanced angiogenesis and accelerated healing of ischemic wounds compared to controls. The clinical trial in CLI patients demonstrated that the FPC therapy achieved substantially higher rates of complete wound closure, prevention of major amputation, pain reduction, and improvement in ankle-brachial index compared to control groups. Notably, the study reported no serious adverse events.</p><p><strong>Conclusions: </strong>FPC therapy exhibited remarkable efficacy in promoting the healing of ischemic wounds, preventing amputation, and improving symptoms and quality of life in patients with CLI. The proangiogenic and provasculogenic effects of FPCs may be attributed to their ability to secrete specific growth factors. These findings provide new insights into the development of cellular therapeutic angiogenesis as a promising approach for the treatment of peripheral arterial diseases.</p>","PeriodicalId":7657,"journal":{"name":"American journal of stem cells","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11249671/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of stem cells","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.62347/MZKI8393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: This study investigated the therapeutic potential of fetal progenitor cells (FPCs) in the treatment of chronic non-healing wounds and ulcers associated with chronic limb ischemia (CLI). The research aimed to elucidate the mechanism of action of FPCs and evaluate their efficacy and safety in CLI patients.
Methods: The researchers isolated FPCs from aborted human fetal liver, brain, and skin tissues and thoroughly characterized them. The preclinical phase of the study involved assessing the effects of FPCs in a rat model of CLI. Subsequently, a randomized controlled clinical trial was conducted to compare the efficacy of FPCs with standard treatment and autologous bone marrow mononuclear cells in CLI patients. The clinical trial lasted 12 months, with a follow-up period of 24-36 months. The primary outcomes included wound healing, frequency of major and minor amputations, pain reduction, and the incidence of complications. Secondary outcomes involved changes in local hemodynamics and histological, ultrastructural, and immunohistochemical assessments of angiogenesis.
Results: In the animal model, FPC treatment significantly enhanced angiogenesis and accelerated healing of ischemic wounds compared to controls. The clinical trial in CLI patients demonstrated that the FPC therapy achieved substantially higher rates of complete wound closure, prevention of major amputation, pain reduction, and improvement in ankle-brachial index compared to control groups. Notably, the study reported no serious adverse events.
Conclusions: FPC therapy exhibited remarkable efficacy in promoting the healing of ischemic wounds, preventing amputation, and improving symptoms and quality of life in patients with CLI. The proangiogenic and provasculogenic effects of FPCs may be attributed to their ability to secrete specific growth factors. These findings provide new insights into the development of cellular therapeutic angiogenesis as a promising approach for the treatment of peripheral arterial diseases.