Integral sliding mode control for an anthropomorphic finger based on nonlinear extended state observer

IF 6.3 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS ISA transactions Pub Date : 2024-07-09 DOI:10.1016/j.isatra.2024.07.010
{"title":"Integral sliding mode control for an anthropomorphic finger based on nonlinear extended state observer","authors":"","doi":"10.1016/j.isatra.2024.07.010","DOIUrl":null,"url":null,"abstract":"<div><p>Due to the disturbance of couplings, the anthropomorphic finger lacks sufficient stability and accuracy in joint<span> motion control, which further affects the performance of complex grasping and operating for anthropomorphic hands. In order to obtain stable and accurate joint motion control effect, an anthropomorphic finger control strategy is proposed for an anthropomorphic finger driven by pneumatic artificial muscles<span><span> (PAMs) in this paper. A nonlinear extended state observer<span> (NESO) is presented to observe the disturbance of couplings for the anthropomorphic finger. An integral sliding mode controller (ISMC) is proposed to realize joint motion control and improve steady state performance. The convergences of the NESO and the ISMC are demonstrated by </span></span>Lyapunov methods. Furthermore, experimental results illustrate the validity of the proposed control strategy.</span></span></p></div>","PeriodicalId":14660,"journal":{"name":"ISA transactions","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019057824003318","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the disturbance of couplings, the anthropomorphic finger lacks sufficient stability and accuracy in joint motion control, which further affects the performance of complex grasping and operating for anthropomorphic hands. In order to obtain stable and accurate joint motion control effect, an anthropomorphic finger control strategy is proposed for an anthropomorphic finger driven by pneumatic artificial muscles (PAMs) in this paper. A nonlinear extended state observer (NESO) is presented to observe the disturbance of couplings for the anthropomorphic finger. An integral sliding mode controller (ISMC) is proposed to realize joint motion control and improve steady state performance. The convergences of the NESO and the ISMC are demonstrated by Lyapunov methods. Furthermore, experimental results illustrate the validity of the proposed control strategy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于非线性扩展状态观测器的拟人手指积分滑模控制。
由于耦合的干扰,拟人手指在关节运动控制方面缺乏足够的稳定性和精确性,这进一步影响了拟人手的复杂抓取和操作性能。为了获得稳定和精确的关节运动控制效果,本文提出了一种由气动人工肌肉(PAM)驱动的拟人手指控制策略。本文提出了一种非线性扩展状态观测器(NESO)来观测拟人手指的耦合干扰。本文提出了一种积分滑模控制器(ISMC),以实现关节运动控制并改善稳态性能。通过 Lyapunov 方法证明了 NESO 和 ISMC 的收敛性。此外,实验结果也说明了所提控制策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ISA transactions
ISA transactions 工程技术-工程:综合
CiteScore
11.70
自引率
12.30%
发文量
824
审稿时长
4.4 months
期刊介绍: ISA Transactions serves as a platform for showcasing advancements in measurement and automation, catering to both industrial practitioners and applied researchers. It covers a wide array of topics within measurement, including sensors, signal processing, data analysis, and fault detection, supported by techniques such as artificial intelligence and communication systems. Automation topics encompass control strategies, modelling, system reliability, and maintenance, alongside optimization and human-machine interaction. The journal targets research and development professionals in control systems, process instrumentation, and automation from academia and industry.
期刊最新文献
Editorial Board Editorial Board Nonlinear dynamic transfer partial least squares for domain adaptive regression Planetary gearbox fault classification based on tooth root strain and GAF pseudo images Anomaly detection technique for securing microgrid against false data attacks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1