Lijuan Ye , Biljana Bogicevic , Christoph J Bolten , Christoph Wittmann
{"title":"Single-cell protein: overcoming technological and biological challenges towards improved industrialization","authors":"Lijuan Ye , Biljana Bogicevic , Christoph J Bolten , Christoph Wittmann","doi":"10.1016/j.copbio.2024.103171","DOIUrl":null,"url":null,"abstract":"<div><p>The commercialization of single-cell protein (SCP) obtained from microbial fermentation in large-scale bioreactors emerged almost 50 years ago, with Pruteen marketed as animal feed in the 1970s and Quorn®, released for human nutrition in 1985. SCP holds great promises to feed the meanwhile doubled world population in a sustainable way, but its application is still limited by price and availability on scale. There is a need to optimize the underlying manufacturing processes with enhanced affordability and productivity. From the industrial perspective, it is crucial to identify key process components and prioritize innovations that best promote cost efficiency and large-scale production. Here, we present the state-of-art in SCP manufacturing and provide a comprehensive insight into recent techno-economic analyses and life-cycle assessments of different production scenarios. Thereby, we identified the most influential technical hotspots and challenges for each of the main production scenarios and evaluated the technological opportunities to overcome them.</p></div>","PeriodicalId":10833,"journal":{"name":"Current opinion in biotechnology","volume":"88 ","pages":"Article 103171"},"PeriodicalIF":7.1000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0958166924001071/pdfft?md5=9ad613124efdfa74477e248a7aeb6e84&pid=1-s2.0-S0958166924001071-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958166924001071","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The commercialization of single-cell protein (SCP) obtained from microbial fermentation in large-scale bioreactors emerged almost 50 years ago, with Pruteen marketed as animal feed in the 1970s and Quorn®, released for human nutrition in 1985. SCP holds great promises to feed the meanwhile doubled world population in a sustainable way, but its application is still limited by price and availability on scale. There is a need to optimize the underlying manufacturing processes with enhanced affordability and productivity. From the industrial perspective, it is crucial to identify key process components and prioritize innovations that best promote cost efficiency and large-scale production. Here, we present the state-of-art in SCP manufacturing and provide a comprehensive insight into recent techno-economic analyses and life-cycle assessments of different production scenarios. Thereby, we identified the most influential technical hotspots and challenges for each of the main production scenarios and evaluated the technological opportunities to overcome them.
期刊介绍:
Current Opinion in Biotechnology (COBIOT) is renowned for publishing authoritative, comprehensive, and systematic reviews. By offering clear and readable syntheses of current advances in biotechnology, COBIOT assists specialists in staying updated on the latest developments in the field. Expert authors annotate the most noteworthy papers from the vast array of information available today, providing readers with valuable insights and saving them time.
As part of the Current Opinion and Research (CO+RE) suite of journals, COBIOT is accompanied by the open-access primary research journal, Current Research in Biotechnology (CRBIOT). Leveraging the editorial excellence, high impact, and global reach of the Current Opinion legacy, CO+RE journals ensure they are widely read resources integral to scientists' workflows.
COBIOT is organized into themed sections, each reviewed once a year. These themes cover various areas of biotechnology, including analytical biotechnology, plant biotechnology, food biotechnology, energy biotechnology, environmental biotechnology, systems biology, nanobiotechnology, tissue, cell, and pathway engineering, chemical biotechnology, and pharmaceutical biotechnology.