{"title":"Automatic diagnosis of epileptic seizures using entropy-based features and multimodel deep learning approaches","authors":"","doi":"10.1016/j.medengphy.2024.104206","DOIUrl":null,"url":null,"abstract":"<div><p>Epilepsy is one of the most common brain diseases, characterised by repeated seizures that occur on a regular basis. During a seizure, a patient's muscles flex uncontrollably, causing a loss of mobility and balance, which can be harmful or even fatal. Developing an automatic approach for warning patients of oncoming seizures necessitates substantial research. Analyzing the electroencephalogram (EEG) output from the human brain's scalp region can help predict seizures. EEG data were analyzed to extract time domain features such as Hurst exponent (Hur), Tsallis entropy (TsEn), enhanced permutation entropy (impe), and amplitude-aware permutation entropy (AAPE). In order to automatically diagnose epileptic seizure in children from normal children, this study conducted two sessions. In the first session, the extracted features from the EEG dataset were classified using three machine learning (ML)-based models, including support vector machine (SVM), K nearest neighbor (KNN), or decision tree (DT), and in the second session, the dataset was classified using three deep learning (DL)-based recurrent neural network (RNN) classifiers in The EEG dataset was obtained from the Neurology Clinic of the Ibn Rushd Training Hospital. In this regard, extensive explanations and research from the time domain and entropy characteristics demonstrate that employing GRU, LSTM, and BiLSTM RNN deep learning classifiers on the <span><math><mi>A</mi><mi>l</mi><mi>l</mi><mo>−</mo><mi>t</mi><mi>i</mi><mi>m</mi><mi>e</mi><mo>−</mo><mi>e</mi><mi>n</mi><mi>t</mi><mi>r</mi><mi>o</mi><mi>p</mi><mi>y</mi></math></span> fusion feature improves the final classification results.</p></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Engineering & Physics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350453324001073","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Epilepsy is one of the most common brain diseases, characterised by repeated seizures that occur on a regular basis. During a seizure, a patient's muscles flex uncontrollably, causing a loss of mobility and balance, which can be harmful or even fatal. Developing an automatic approach for warning patients of oncoming seizures necessitates substantial research. Analyzing the electroencephalogram (EEG) output from the human brain's scalp region can help predict seizures. EEG data were analyzed to extract time domain features such as Hurst exponent (Hur), Tsallis entropy (TsEn), enhanced permutation entropy (impe), and amplitude-aware permutation entropy (AAPE). In order to automatically diagnose epileptic seizure in children from normal children, this study conducted two sessions. In the first session, the extracted features from the EEG dataset were classified using three machine learning (ML)-based models, including support vector machine (SVM), K nearest neighbor (KNN), or decision tree (DT), and in the second session, the dataset was classified using three deep learning (DL)-based recurrent neural network (RNN) classifiers in The EEG dataset was obtained from the Neurology Clinic of the Ibn Rushd Training Hospital. In this regard, extensive explanations and research from the time domain and entropy characteristics demonstrate that employing GRU, LSTM, and BiLSTM RNN deep learning classifiers on the fusion feature improves the final classification results.
期刊介绍:
Medical Engineering & Physics provides a forum for the publication of the latest developments in biomedical engineering, and reflects the essential multidisciplinary nature of the subject. The journal publishes in-depth critical reviews, scientific papers and technical notes. Our focus encompasses the application of the basic principles of physics and engineering to the development of medical devices and technology, with the ultimate aim of producing improvements in the quality of health care.Topics covered include biomechanics, biomaterials, mechanobiology, rehabilitation engineering, biomedical signal processing and medical device development. Medical Engineering & Physics aims to keep both engineers and clinicians abreast of the latest applications of technology to health care.