Taocui Yan , Yaqian Jin , Shangqing Liu , Qiuni Li , Guowei Zuo , Ziqian Ye , Jin Li , Baoru Han
{"title":"ResGloTBNet: An interpretable deep residual network with global long-range dependency for tuberculosis screening of sputum smear microscopy images","authors":"Taocui Yan , Yaqian Jin , Shangqing Liu , Qiuni Li , Guowei Zuo , Ziqian Ye , Jin Li , Baoru Han","doi":"10.1016/j.medengphy.2025.104300","DOIUrl":null,"url":null,"abstract":"<div><div>Tuberculosis is a high-mortality infectious disease. Manual sputum smear microscopy is a common and effective method for screening tuberculosis. However, it is time-consuming, labor-intensive, and has low sensitivity. In this study, we propose ResGloTBNet, a framework that integrates convolutional neural network and graph convolutional network for sputum smear image classification with high discriminative power. In this framework, the global reasoning unit is introduced into the residual structure of ResNet to form the ResGloRe module, which not only fully extracts the local features of the image but also models the global relationship between different regions in the image. Furthermore, we applied activation maximization and class activation mapping to generate explanations for the model's predictions on the test sets. ResGloTBNet achieved remarkable results on a publicly available dataset, reaching 97.2 % accuracy and 99.0 % sensitivity. It also maintained a high level of performance on a private dataset, attaining 98.0 % accuracy and 96.6 % sensitivity. In addition, interpretable analysis demonstrated that ResGloTBNet can effectively identify the features and regions in the input images that contribute the most to the model's predictions, providing valuable insights into the decision-making process of the deep learning model.</div></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":"137 ","pages":"Article 104300"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Engineering & Physics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350453325000190","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Tuberculosis is a high-mortality infectious disease. Manual sputum smear microscopy is a common and effective method for screening tuberculosis. However, it is time-consuming, labor-intensive, and has low sensitivity. In this study, we propose ResGloTBNet, a framework that integrates convolutional neural network and graph convolutional network for sputum smear image classification with high discriminative power. In this framework, the global reasoning unit is introduced into the residual structure of ResNet to form the ResGloRe module, which not only fully extracts the local features of the image but also models the global relationship between different regions in the image. Furthermore, we applied activation maximization and class activation mapping to generate explanations for the model's predictions on the test sets. ResGloTBNet achieved remarkable results on a publicly available dataset, reaching 97.2 % accuracy and 99.0 % sensitivity. It also maintained a high level of performance on a private dataset, attaining 98.0 % accuracy and 96.6 % sensitivity. In addition, interpretable analysis demonstrated that ResGloTBNet can effectively identify the features and regions in the input images that contribute the most to the model's predictions, providing valuable insights into the decision-making process of the deep learning model.
期刊介绍:
Medical Engineering & Physics provides a forum for the publication of the latest developments in biomedical engineering, and reflects the essential multidisciplinary nature of the subject. The journal publishes in-depth critical reviews, scientific papers and technical notes. Our focus encompasses the application of the basic principles of physics and engineering to the development of medical devices and technology, with the ultimate aim of producing improvements in the quality of health care.Topics covered include biomechanics, biomaterials, mechanobiology, rehabilitation engineering, biomedical signal processing and medical device development. Medical Engineering & Physics aims to keep both engineers and clinicians abreast of the latest applications of technology to health care.