Portability rules detection by Epilepsy Tracking META-Set Analysis

Christian Riccio , Roberta Siciliano , Michele Staiano , Giuseppe Longo , Luigi Pavone , Gaetano Zazzaro
{"title":"Portability rules detection by Epilepsy Tracking META-Set Analysis","authors":"Christian Riccio ,&nbsp;Roberta Siciliano ,&nbsp;Michele Staiano ,&nbsp;Giuseppe Longo ,&nbsp;Luigi Pavone ,&nbsp;Gaetano Zazzaro","doi":"10.1016/j.neuri.2024.100168","DOIUrl":null,"url":null,"abstract":"<div><p>Epilepsy is a severe and common neurological disease that causes sudden and irregular seizures, necessitating patient-specific detection models for effective management. The proposed methodology, Epilepsy Tracking META-Set Analysis, establishes portability rules that identify similar patients, enabling the transfer of these detection models from one patient to another. Main issue is to identify clusters of patients analyzing a set of meta-features of each patient in terms of clinical descriptors, performance metrics of a machine learning model for seizure detection, and data complexity measures. The investigation of complexity measures represents a novelty in such a medical field, allowing to compare patients and to support automated seizure detection methods. The proposed methodology is validated using the well-known Epileptic Seizure EEG Database from the Epilepsy Center of the University Hospital of Freiburg and demonstrates promising results in transferring detection models to new cases.</p></div>","PeriodicalId":74295,"journal":{"name":"Neuroscience informatics","volume":"4 3","pages":"Article 100168"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277252862400013X/pdfft?md5=bddb7aa1afbb35278f232c5c831c5841&pid=1-s2.0-S277252862400013X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277252862400013X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Epilepsy is a severe and common neurological disease that causes sudden and irregular seizures, necessitating patient-specific detection models for effective management. The proposed methodology, Epilepsy Tracking META-Set Analysis, establishes portability rules that identify similar patients, enabling the transfer of these detection models from one patient to another. Main issue is to identify clusters of patients analyzing a set of meta-features of each patient in terms of clinical descriptors, performance metrics of a machine learning model for seizure detection, and data complexity measures. The investigation of complexity measures represents a novelty in such a medical field, allowing to compare patients and to support automated seizure detection methods. The proposed methodology is validated using the well-known Epileptic Seizure EEG Database from the Epilepsy Center of the University Hospital of Freiburg and demonstrates promising results in transferring detection models to new cases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过癫痫追踪 META 集分析检测可移植性规则
癫痫是一种严重而常见的神经系统疾病,会导致突然和不规则的癫痫发作,因此需要针对患者的检测模型来进行有效管理。所提出的方法 "癫痫追踪元特征集分析 "建立了可移植性规则,可识别相似的患者,从而将这些检测模型从一个患者转移到另一个患者。主要问题是通过分析每位患者在临床描述符、癫痫发作检测机器学习模型的性能指标和数据复杂性度量方面的一组元特征来识别患者群组。对复杂性度量的研究是医疗领域的一项创新,可以对患者进行比较,并为自动癫痫发作检测方法提供支持。所提出的方法通过弗莱堡大学医院癫痫中心著名的癫痫发作脑电图数据库进行了验证,并在将检测模型转移到新病例方面取得了可喜的成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neuroscience informatics
Neuroscience informatics Surgery, Radiology and Imaging, Information Systems, Neurology, Artificial Intelligence, Computer Science Applications, Signal Processing, Critical Care and Intensive Care Medicine, Health Informatics, Clinical Neurology, Pathology and Medical Technology
自引率
0.00%
发文量
0
审稿时长
57 days
期刊最新文献
Integrated analysis of lncRNA-miRNA-mRNA ceRNA network in neurodegenerative diseases Topic modeling of neuropsychiatric diseases related to gut microbiota and gut brain axis using artificial intelligence based BERTopic model on PubMed abstracts Brain network analysis in Parkinson's disease patients based on graph theory Exploring age-related functional brain changes during audio-visual integration tasks in early to mid-adulthood Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1