Bayesian Inference General Procedures for A Single-subject Test study

Jie Li , Gary Green , Sarah J.A. Carr , Peng Liu , Jian Zhang
{"title":"Bayesian Inference General Procedures for A Single-subject Test study","authors":"Jie Li ,&nbsp;Gary Green ,&nbsp;Sarah J.A. Carr ,&nbsp;Peng Liu ,&nbsp;Jian Zhang","doi":"10.1016/j.neuri.2025.100195","DOIUrl":null,"url":null,"abstract":"<div><div>Abnormality detection in identifying a single-subject which deviates from the majority of a control group dataset is a fundamental problem. Typically, the control group is characterised using standard Normal statistics, and the detection of a single abnormal subject is in that context. However, in many situations, the control group cannot be described by Normal statistics, making standard statistical methods inappropriate. This paper presents a Bayesian Inference General Procedures for A Single-subject Test (BIGPAST) designed to mitigate the effects of skewness under the assumption that the dataset of the control group comes from the skewed Student <em>t</em> distribution. BIGPAST operates under the null hypothesis that the single-subject follows the same distribution as the control group. We assess BIGPAST's performance against other methods through simulation studies. The results demonstrate that BIGPAST is robust against deviations from normality and outperforms the existing approaches in accuracy, nearest to the nominal accuracy 0.95. BIGPAST can reduce model misspecification errors under the skewed Student <em>t</em> assumption by up to 12 times, as demonstrated in Section <span><span>3.3</span></span>. We apply BIGPAST to a Magnetoencephalography (MEG) dataset consisting of an individual with mild traumatic brain injury and an age and gender-matched control group. For example, the previous method failed to detect abnormalities in 8 brain areas, whereas BIGPAST successfully identified them, demonstrating its effectiveness in detecting abnormalities in a single-subject.</div></div>","PeriodicalId":74295,"journal":{"name":"Neuroscience informatics","volume":"5 2","pages":"Article 100195"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277252862500010X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abnormality detection in identifying a single-subject which deviates from the majority of a control group dataset is a fundamental problem. Typically, the control group is characterised using standard Normal statistics, and the detection of a single abnormal subject is in that context. However, in many situations, the control group cannot be described by Normal statistics, making standard statistical methods inappropriate. This paper presents a Bayesian Inference General Procedures for A Single-subject Test (BIGPAST) designed to mitigate the effects of skewness under the assumption that the dataset of the control group comes from the skewed Student t distribution. BIGPAST operates under the null hypothesis that the single-subject follows the same distribution as the control group. We assess BIGPAST's performance against other methods through simulation studies. The results demonstrate that BIGPAST is robust against deviations from normality and outperforms the existing approaches in accuracy, nearest to the nominal accuracy 0.95. BIGPAST can reduce model misspecification errors under the skewed Student t assumption by up to 12 times, as demonstrated in Section 3.3. We apply BIGPAST to a Magnetoencephalography (MEG) dataset consisting of an individual with mild traumatic brain injury and an age and gender-matched control group. For example, the previous method failed to detect abnormalities in 8 brain areas, whereas BIGPAST successfully identified them, demonstrating its effectiveness in detecting abnormalities in a single-subject.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Neuroscience informatics
Neuroscience informatics Surgery, Radiology and Imaging, Information Systems, Neurology, Artificial Intelligence, Computer Science Applications, Signal Processing, Critical Care and Intensive Care Medicine, Health Informatics, Clinical Neurology, Pathology and Medical Technology
自引率
0.00%
发文量
0
审稿时长
57 days
期刊最新文献
Integration of software-based cognitive approaches and brain-like computer machinery for efficient cognitive computing Bayesian Inference General Procedures for A Single-subject Test study Analyzing infant cry to detect birth asphyxia using a hybrid CNN and feature extraction approach Editorial Board Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1