pySimFrac: A Python library for synthetic fracture generation and analysis

IF 4.2 2区 地球科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Geosciences Pub Date : 2024-07-02 DOI:10.1016/j.cageo.2024.105665
Eric Guiltinan, Javier E. Santos, Prakash Purswani, Jeffrey D. Hyman
{"title":"pySimFrac: A Python library for synthetic fracture generation and analysis","authors":"Eric Guiltinan,&nbsp;Javier E. Santos,&nbsp;Prakash Purswani,&nbsp;Jeffrey D. Hyman","doi":"10.1016/j.cageo.2024.105665","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we introduce <span>pySimFrac</span> , an open-source python library for generating 3-D synthetic fracture realizations, integrating with fluid simulators, and performing analysis. <span>pySimFrac</span> allows the user to specify one of three fracture generation techniques (Box, Gaussian, or Spectral) and perform statistical analysis including the autocorrelation, moments, and probability density functions of the fracture surfaces and aperture. This analysis and accessibility of a python library allows the user to create realistic fracture realizations and vary properties of interest. In addition, <span>pySimFrac</span> includes integration examples to two different pore-scale simulators and the discrete fracture network simulator, dfnWorks. The capabilities developed in this work provides opportunity for quick and smooth adoption and implementation by the wider scientific community for accurate characterization of fluid transport in geologic media. We present <span>pySimFrac</span> along with integration examples and discuss the ability to extend <span>pySimFrac</span> from a single complex fracture to complex fracture networks.</p></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":"191 ","pages":"Article 105665"},"PeriodicalIF":4.2000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0098300424001481/pdfft?md5=5d27e62672e4e49e6eb5ec852f09ad80&pid=1-s2.0-S0098300424001481-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Geosciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098300424001481","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce pySimFrac , an open-source python library for generating 3-D synthetic fracture realizations, integrating with fluid simulators, and performing analysis. pySimFrac allows the user to specify one of three fracture generation techniques (Box, Gaussian, or Spectral) and perform statistical analysis including the autocorrelation, moments, and probability density functions of the fracture surfaces and aperture. This analysis and accessibility of a python library allows the user to create realistic fracture realizations and vary properties of interest. In addition, pySimFrac includes integration examples to two different pore-scale simulators and the discrete fracture network simulator, dfnWorks. The capabilities developed in this work provides opportunity for quick and smooth adoption and implementation by the wider scientific community for accurate characterization of fluid transport in geologic media. We present pySimFrac along with integration examples and discuss the ability to extend pySimFrac from a single complex fracture to complex fracture networks.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
pySimFrac:用于合成断裂生成和分析的 Python 库
pySimFrac 允许用户指定三种断裂生成技术(箱形、高斯或频谱)之一,并执行统计分析,包括断裂表面和孔径的自相关性、矩和概率密度函数。通过这种分析和使用 python 库,用户可以创建逼真的断裂现实,并改变感兴趣的属性。此外,pySimFrac 还包括两个不同孔隙尺度模拟器和离散断裂网络模拟器 dfnWorks 的集成示例。这项工作所开发的功能为更广泛的科学界提供了快速、顺利地采用和实施的机会,以准确描述地质介质中的流体传输。我们介绍了 pySimFrac 以及集成示例,并讨论了将 pySimFrac 从单一复杂断裂扩展到复杂断裂网络的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Geosciences
Computers & Geosciences 地学-地球科学综合
CiteScore
9.30
自引率
6.80%
发文量
164
审稿时长
3.4 months
期刊介绍: Computers & Geosciences publishes high impact, original research at the interface between Computer Sciences and Geosciences. Publications should apply modern computer science paradigms, whether computational or informatics-based, to address problems in the geosciences.
期刊最新文献
Multimodal feature integration network for lithology identification from point cloud data A two-dimensional magnetotelluric deep learning inversion approach based on improved Dense Convolutional Network Removing atmospheric noise from InSAR interferograms in mountainous regions with a convolutional neural network Novel empirical curvelet denoising strategy for suppressing mixed noise of microseismic data Curvilinear lineament extraction: Bayesian optimization of Principal Component Wavelet Analysis and Hysteresis Thresholding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1