Efficient reservoir characterization using dimensionless ensemble smoother and multiple data assimilation in damaged multilayer systems

IF 4.2 2区 地球科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Geosciences Pub Date : 2024-11-26 DOI:10.1016/j.cageo.2024.105777
Adailton José do Nascimento Sousa , Malú Grave , Renan Vieira Bela , Thiago M.D. Silva , Sinesio Pesco , Abelardo Borges Barreto Junior
{"title":"Efficient reservoir characterization using dimensionless ensemble smoother and multiple data assimilation in damaged multilayer systems","authors":"Adailton José do Nascimento Sousa ,&nbsp;Malú Grave ,&nbsp;Renan Vieira Bela ,&nbsp;Thiago M.D. Silva ,&nbsp;Sinesio Pesco ,&nbsp;Abelardo Borges Barreto Junior","doi":"10.1016/j.cageo.2024.105777","DOIUrl":null,"url":null,"abstract":"<div><div>The ES-MDA has been extensively applied to address inverse problems related to oil reservoirs, leveraging Bayesian statistics as its cornerstone. This ensemble-based methodology utilizes historical reservoir data to infer its properties such as permeability and skin zone properties. In a recent study , the ES-MDA was utilized to estimate individual skin zone properties using well pressure responses as observed data. However, owing to insufficient reservoir information and the inherent nonlinearity of the problem, their findings lacked precision. This study presents a novel approach to efficiently characterize reservoir skin zones by employing an enhanced ES-MDA implementation and augmenting the observed data vector with flow-rate data. We introduce an analytical method for determining the pressure and flow rate observed at the well during an injectivity test, specifically tailored for multilayer reservoirs with skin zones, utilizing Laplace Transform. To convert the computed data to the real field, we use Stehfest’s algorithm. The analytical model serves a dual purpose: generating artificial data to represent a real field and predicting properties when coupled to the ES-MDA. The new analytical model enables the extraction of flow rates in each layer, which are then integrated as new data into the ES-MDA, thereby bolstering the estimation accuracy of targeted parameters. Both flow rate and pressure are employed as input data and, to alleviate the impact of orders of magnitude disparities on estimates, the ES-MDA is implemented in a dimensionless form. We tested the proposed methodology in four cases to display how adding the flow-rate data could improve results from a previous work. Moreover, the dimensionless ES-MDA offered skin zone properties with lower RMSE compared to the ones obtained in the mentioned study.</div></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":"195 ","pages":"Article 105777"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Geosciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098300424002607","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The ES-MDA has been extensively applied to address inverse problems related to oil reservoirs, leveraging Bayesian statistics as its cornerstone. This ensemble-based methodology utilizes historical reservoir data to infer its properties such as permeability and skin zone properties. In a recent study , the ES-MDA was utilized to estimate individual skin zone properties using well pressure responses as observed data. However, owing to insufficient reservoir information and the inherent nonlinearity of the problem, their findings lacked precision. This study presents a novel approach to efficiently characterize reservoir skin zones by employing an enhanced ES-MDA implementation and augmenting the observed data vector with flow-rate data. We introduce an analytical method for determining the pressure and flow rate observed at the well during an injectivity test, specifically tailored for multilayer reservoirs with skin zones, utilizing Laplace Transform. To convert the computed data to the real field, we use Stehfest’s algorithm. The analytical model serves a dual purpose: generating artificial data to represent a real field and predicting properties when coupled to the ES-MDA. The new analytical model enables the extraction of flow rates in each layer, which are then integrated as new data into the ES-MDA, thereby bolstering the estimation accuracy of targeted parameters. Both flow rate and pressure are employed as input data and, to alleviate the impact of orders of magnitude disparities on estimates, the ES-MDA is implemented in a dimensionless form. We tested the proposed methodology in four cases to display how adding the flow-rate data could improve results from a previous work. Moreover, the dimensionless ES-MDA offered skin zone properties with lower RMSE compared to the ones obtained in the mentioned study.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Geosciences
Computers & Geosciences 地学-地球科学综合
CiteScore
9.30
自引率
6.80%
发文量
164
审稿时长
3.4 months
期刊介绍: Computers & Geosciences publishes high impact, original research at the interface between Computer Sciences and Geosciences. Publications should apply modern computer science paradigms, whether computational or informatics-based, to address problems in the geosciences.
期刊最新文献
Fire-Image-DenseNet (FIDN) for predicting wildfire burnt area using remote sensing data Efficient reservoir characterization using dimensionless ensemble smoother and multiple data assimilation in damaged multilayer systems Shear wave velocity prediction based on bayesian-optimized multi-head attention mechanism and CNN-BiLSTM Multivariate simulation using a locally varying coregionalization model Automatic variogram calculation and modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1