High efficient CuCeO2-δ/SiO2 catalyst for RWGS reaction: impact of Ce content and loading sequence
Shan Zhao, Le Yang, Shen Yao, Yahong Dai, Shuang Chen, Jia Zeng, Aiping Jia, Hongmei Xie, Guilin Zhou
求助PDF
{"title":"High efficient CuCeO2-δ/SiO2 catalyst for RWGS reaction: impact of Ce content and loading sequence","authors":"Shan Zhao, Le Yang, Shen Yao, Yahong Dai, Shuang Chen, Jia Zeng, Aiping Jia, Hongmei Xie, Guilin Zhou","doi":"10.1002/ghg.2294","DOIUrl":null,"url":null,"abstract":"<p>The extensive use of fossil energy leads to wanton emission of CO<sub>2</sub> and serious environmental problems. The exploration of high-performance catalysts plays a pivotal role in CO<sub>2</sub> resource utilization. In this paper, CuCe<sub>y</sub>K catalysts are prepared by wet impregnation method using ordered mesoporous SiO<sub>2</sub> as support for the reverse water gas shift (RWGS) reaction. The physicochemical properties of the prepared catalysts are characterized by H<sub>2</sub>-TPR, BET, XRD, Quasi <i>in-situ</i> XPS, H<sub>2</sub>-TPD, and CO<sub>2</sub>-TPD techniques. The results demonstrate thatthe Cu<sup>0</sup> species can form synergistic effects with oxygen vacancies (O<sub>v</sub>) to enhance the CuCe<sub>y</sub>K catalytic performance. Additionally, the electronic effects between Ce and Cu not only enhances the adsorption and activation performances of the catalyst towards CO<sub>2</sub> and H<sub>2</sub> molecules, but also effectively suppresses the sintering of Cu<sup>0</sup> species, thereby enhancing the stability of the corresponding catalyst. It is worth mentioning that the Ce content also directly affects the catalytic performances of the CuCe<sub>y</sub>K catalyst. The CuCe<sub>15</sub>K catalyst with a Ce content of 15% displays excellent CO<sub>2</sub> hydrogenation performances, and the CO<sub>2</sub> conversion and CO selectivity up to 41 % and 100 % at 420 °C, respectively. © 2024 Society of Chemical Industry and John Wiley & Sons, Ltd.</p>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"14 4","pages":"636-658"},"PeriodicalIF":2.7000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Greenhouse Gases: Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ghg.2294","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
引用
批量引用
Abstract
The extensive use of fossil energy leads to wanton emission of CO2 and serious environmental problems. The exploration of high-performance catalysts plays a pivotal role in CO2 resource utilization. In this paper, CuCey K catalysts are prepared by wet impregnation method using ordered mesoporous SiO2 as support for the reverse water gas shift (RWGS) reaction. The physicochemical properties of the prepared catalysts are characterized by H2 -TPR, BET, XRD, Quasi in-situ XPS, H2 -TPD, and CO2 -TPD techniques. The results demonstrate thatthe Cu0 species can form synergistic effects with oxygen vacancies (Ov ) to enhance the CuCey K catalytic performance. Additionally, the electronic effects between Ce and Cu not only enhances the adsorption and activation performances of the catalyst towards CO2 and H2 molecules, but also effectively suppresses the sintering of Cu0 species, thereby enhancing the stability of the corresponding catalyst. It is worth mentioning that the Ce content also directly affects the catalytic performances of the CuCey K catalyst. The CuCe15 K catalyst with a Ce content of 15% displays excellent CO2 hydrogenation performances, and the CO2 conversion and CO selectivity up to 41 % and 100 % at 420 °C, respectively. © 2024 Society of Chemical Industry and John Wiley & Sons, Ltd.
用于 RWGS 反应的高效 CuCeO2-δ/SiO2 催化剂:Ce 含量和负载顺序的影响
化石能源的大量使用导致二氧化碳的肆意排放和严重的环境问题。高性能催化剂的探索在二氧化碳资源利用中起着举足轻重的作用。本文以有序介孔二氧化硅为载体,采用湿法浸渍制备了 CuCeyK 催化剂,用于反向水煤气变换(RWGS)反应。采用 H2-TPR、BET、XRD、准原位 XPS、H2-TPD 和 CO2-TPD 技术对所制备催化剂的理化性质进行了表征。结果表明,Cu0 物种能与氧空位(Ov)形成协同效应,从而提高 CuCeyK 的催化性能。此外,Ce 和 Cu 之间的电子效应不仅能提高催化剂对 CO2 和 H2 分子的吸附和活化性能,还能有效抑制 Cu0 物种的烧结,从而提高相应催化剂的稳定性。值得一提的是,Ce 的含量也会直接影响 CuCeyK 催化剂的催化性能。Ce 含量为 15%的 CuCe15K 催化剂具有优异的 CO2 加氢性能,在 420 °C 时 CO2 转化率和 CO 选择性分别高达 41% 和 100%。© 2024 化学工业协会和 John Wiley & Sons, Ltd. 保留所有权利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。