Response Surface Optimisation of Carbon Dioxide Adsorption Onto Palm Shell Activated Carbon Functionalised With Natural Amino Acids

IF 2.7 4区 环境科学与生态学 Q3 ENERGY & FUELS Greenhouse Gases: Science and Technology Pub Date : 2025-01-25 DOI:10.1002/ghg.2321
Nur Syahirah Mohamed Hatta, Farihahusnah Hussin, Lai Ti Gew, Mohamed Kheireddine Aroua
{"title":"Response Surface Optimisation of Carbon Dioxide Adsorption Onto Palm Shell Activated Carbon Functionalised With Natural Amino Acids","authors":"Nur Syahirah Mohamed Hatta,&nbsp;Farihahusnah Hussin,&nbsp;Lai Ti Gew,&nbsp;Mohamed Kheireddine Aroua","doi":"10.1002/ghg.2321","DOIUrl":null,"url":null,"abstract":"<p>Amino acids have shown promising results for carbon dioxide (CO<sub>2</sub>) capture when functionalised on solid materials; however, the functionalisation often relies on commercial synthetic amino acids. This study investigated the optimal CO<sub>2</sub> adsorption performance of amino acid–functionalised material synthesised from palm shell–based activated carbon and natural amino acids, specifically egg white (EW) solution, in a continuous adsorption column. The process conditions of the column were optimised using response surface methodology. Four parameters, namely, the gas flow rate, adsorption temperature, CO<sub>2</sub> concentration and EW concentration in the impregnation solution, were identified as significantly affecting CO<sub>2</sub> adsorption performance. Good agreements were obtained between the predicted and experimental data, with the coefficients of determination ranging from 0.9639 to 0.9784. A maximum CO<sub>2</sub> adsorption capacity of 1.1793 mmol/g was achieved under optimal process conditions: a gas flow rate of 200 mL/min, an adsorption temperature of 25°C, a CO<sub>2</sub> concentration of 25 vol.%, and an EW concentration of 15 wt.%. The validation results further confirmed the reliability of the developed model equation in predicting the maximum CO<sub>2</sub> adsorption capacity at a fixed 15 vol.% CO<sub>2</sub> concentration, with low estimation error. The comparable results obtained using EW waste in this study represent a significant finding in the potential for waste valorisation, aligning with Sustainable Development Goal (SDG) 12 of the United Nations Sustainable Development Goals, as well as contributing to climate action as outlined in SDG 13.</p>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"15 1","pages":"36-52"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ghg.2321","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Greenhouse Gases: Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ghg.2321","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Amino acids have shown promising results for carbon dioxide (CO2) capture when functionalised on solid materials; however, the functionalisation often relies on commercial synthetic amino acids. This study investigated the optimal CO2 adsorption performance of amino acid–functionalised material synthesised from palm shell–based activated carbon and natural amino acids, specifically egg white (EW) solution, in a continuous adsorption column. The process conditions of the column were optimised using response surface methodology. Four parameters, namely, the gas flow rate, adsorption temperature, CO2 concentration and EW concentration in the impregnation solution, were identified as significantly affecting CO2 adsorption performance. Good agreements were obtained between the predicted and experimental data, with the coefficients of determination ranging from 0.9639 to 0.9784. A maximum CO2 adsorption capacity of 1.1793 mmol/g was achieved under optimal process conditions: a gas flow rate of 200 mL/min, an adsorption temperature of 25°C, a CO2 concentration of 25 vol.%, and an EW concentration of 15 wt.%. The validation results further confirmed the reliability of the developed model equation in predicting the maximum CO2 adsorption capacity at a fixed 15 vol.% CO2 concentration, with low estimation error. The comparable results obtained using EW waste in this study represent a significant finding in the potential for waste valorisation, aligning with Sustainable Development Goal (SDG) 12 of the United Nations Sustainable Development Goals, as well as contributing to climate action as outlined in SDG 13.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Greenhouse Gases: Science and Technology
Greenhouse Gases: Science and Technology ENERGY & FUELS-ENGINEERING, ENVIRONMENTAL
CiteScore
4.90
自引率
4.50%
发文量
55
审稿时长
3 months
期刊介绍: Greenhouse Gases: Science and Technology is a new online-only scientific journal dedicated to the management of greenhouse gases. The journal will focus on methods for carbon capture and storage (CCS), as well as utilization of carbon dioxide (CO2) as a feedstock for fuels and chemicals. GHG will also provide insight into strategies to mitigate emissions of other greenhouse gases. Significant advances will be explored in critical reviews, commentary articles and short communications of broad interest. In addition, the journal will offer analyses of relevant economic and political issues, industry developments and case studies. Greenhouse Gases: Science and Technology is an exciting new online-only journal published as a co-operative venture of the SCI (Society of Chemical Industry) and John Wiley & Sons, Ltd
期刊最新文献
Issue Information Impact of Diverse Parameters on CO2 Adsorption in CO2 Sequestration: Utilizing a Novel Triaxial Testing Apparatus Research and Prospect of CCUS-EOR Technology and Carbon Emission Reduction Accounting Evaluation Nickel Aluminum Spinel Derived Ni-F-Al Active Site for the Catalytic Dehydrofluorination of Potent Greenhouse Gas 1,1,1,2-Tetrafluoroethane Response Surface Optimisation of Carbon Dioxide Adsorption Onto Palm Shell Activated Carbon Functionalised With Natural Amino Acids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1