{"title":"Stress-Related Chronic Fatigue Syndrome: A Case Report with a Positive Response to Alpha-Methyl-P-Tyrosine (AMPT) Treatment","authors":"Maria Ljungström, E. Oltra, Marta Pardo","doi":"10.3390/ijms25147778","DOIUrl":null,"url":null,"abstract":"Chronic fatigue syndrome (CFS) is a heterogeneous disorder with a genetically associated vulnerability of the catecholamine metabolism (e.g., catechol O-methyltransferase polymorphisms), in which environmental factors have an important impact. Alpha-methyl-p-tyrosine (AMPT; also referred to as metyrosine) is an approved medication for the treatment of pheochromocytoma. As a tyrosine hydroxylase inhibitor, AMPT may be a potential candidate for the treatment of diseases involving catecholamine alterations. However, only small-scale clinical trials have tested AMPT repurposing in a few other illnesses. The current case report compiles genetic and longitudinal biochemical data for over a year of follow-up of a male patient sequentially diagnosed with sustained overstress, neurasthenia, CFS (diagnosed in 2012 as per the Center for Disease Control (CDC/Fukuda)), and postural orthostatic tachycardia syndrome (POTS) over a 10-year period and reports the patient’s symptom improvement in response to low–medium doses of AMPT. This case was recognized as a stress-related CFS case. Data are reported from medical records provided by the patient to allow a detailed response to treatment targeting the hyperadrenergic state presented by the patient. We highlight the lack of a positive response to classical approaches to treating CFS, reflecting the limitations of CFS diagnosis and available treatments to alleviate patients’ symptoms. The current pathomechanism hypothesis emphasizes monoamine alterations (hyperadrenergic state) in the DA/adrenergic system and a dysfunctional autonomic nervous system resulting from sympathetic overactivity. The response of the patient to AMPT treatment highlights the relevance of pacing with regard to stressful situations and increased activity. Importantly, the results do not indicate causality between AMPT and its action on the monoamine system, and future studies should evaluate the implications of other targets.","PeriodicalId":49179,"journal":{"name":"International Journal of Molecular Sciences","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms25147778","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chronic fatigue syndrome (CFS) is a heterogeneous disorder with a genetically associated vulnerability of the catecholamine metabolism (e.g., catechol O-methyltransferase polymorphisms), in which environmental factors have an important impact. Alpha-methyl-p-tyrosine (AMPT; also referred to as metyrosine) is an approved medication for the treatment of pheochromocytoma. As a tyrosine hydroxylase inhibitor, AMPT may be a potential candidate for the treatment of diseases involving catecholamine alterations. However, only small-scale clinical trials have tested AMPT repurposing in a few other illnesses. The current case report compiles genetic and longitudinal biochemical data for over a year of follow-up of a male patient sequentially diagnosed with sustained overstress, neurasthenia, CFS (diagnosed in 2012 as per the Center for Disease Control (CDC/Fukuda)), and postural orthostatic tachycardia syndrome (POTS) over a 10-year period and reports the patient’s symptom improvement in response to low–medium doses of AMPT. This case was recognized as a stress-related CFS case. Data are reported from medical records provided by the patient to allow a detailed response to treatment targeting the hyperadrenergic state presented by the patient. We highlight the lack of a positive response to classical approaches to treating CFS, reflecting the limitations of CFS diagnosis and available treatments to alleviate patients’ symptoms. The current pathomechanism hypothesis emphasizes monoamine alterations (hyperadrenergic state) in the DA/adrenergic system and a dysfunctional autonomic nervous system resulting from sympathetic overactivity. The response of the patient to AMPT treatment highlights the relevance of pacing with regard to stressful situations and increased activity. Importantly, the results do not indicate causality between AMPT and its action on the monoamine system, and future studies should evaluate the implications of other targets.
期刊介绍:
The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).