Chao Qin, Shengyao Jiang, Ke Xu, Jianshen Zhu, Liyuan Wang, Wenhao Yang, Fuquan Xiao, Kaixuan Yang, Qizhong Huang, He Meng
{"title":"One-Step Genetic Modification by Embryonic Doral Aorta Injection of Adenoviral CRISPR/Cas9 Vector in Chicken","authors":"Chao Qin, Shengyao Jiang, Ke Xu, Jianshen Zhu, Liyuan Wang, Wenhao Yang, Fuquan Xiao, Kaixuan Yang, Qizhong Huang, He Meng","doi":"10.3390/ijms25168692","DOIUrl":null,"url":null,"abstract":"In the avian species, genetic modification by cell nuclear transfer is infeasible due to its unique reproductive system. The in vitro primordial germ cell modification approach is difficult and cumbersome, although it is the main method of genetic modification in chickens. In the present study, the adenoviral CRISPR/Cas9 vector was directly microinjected into the dorsal aorta of chicken embryos to achieve in vivo genetic modification. The results demonstrated that keratin 75-like 4 (KRT75L4), a candidate gene crucial for feather development, was widely knocked out, and an 8bp deletion was the predominant mutation that occurred in multiple tissues in chimeras, particularly in the gonad (2.63–11.57%). As we expected, significant modification was detected in the sperm of G0 (0.16–4.85%), confirming the potential to generate homozygous chickens and establishing this vector as a simple and effective method for genetic modification in avian species.","PeriodicalId":49179,"journal":{"name":"International Journal of Molecular Sciences","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms25168692","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In the avian species, genetic modification by cell nuclear transfer is infeasible due to its unique reproductive system. The in vitro primordial germ cell modification approach is difficult and cumbersome, although it is the main method of genetic modification in chickens. In the present study, the adenoviral CRISPR/Cas9 vector was directly microinjected into the dorsal aorta of chicken embryos to achieve in vivo genetic modification. The results demonstrated that keratin 75-like 4 (KRT75L4), a candidate gene crucial for feather development, was widely knocked out, and an 8bp deletion was the predominant mutation that occurred in multiple tissues in chimeras, particularly in the gonad (2.63–11.57%). As we expected, significant modification was detected in the sperm of G0 (0.16–4.85%), confirming the potential to generate homozygous chickens and establishing this vector as a simple and effective method for genetic modification in avian species.
期刊介绍:
The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).