Determine Intraday Trading Currency's Trend Framework Evidence From Machine Learning Techniques

Inzamam Khan, W. Ahmed, Shafqat Shad, Chandan Kumar, Muhammad Usman, Milad Jasemi, Khuarm Shafi
{"title":"Determine Intraday Trading Currency's Trend Framework Evidence From Machine Learning Techniques","authors":"Inzamam Khan, W. Ahmed, Shafqat Shad, Chandan Kumar, Muhammad Usman, Milad Jasemi, Khuarm Shafi","doi":"10.4018/ijbir.346977","DOIUrl":null,"url":null,"abstract":"The purpose of this study is to determine the intraday hourly trading trends of currencies using predictive modeling techniques. The study encompasses two distinct intraday time intervals of 30 minutes and 1 hour, analyzing currencies from 8 different countries. It incorporates the use of wavelets MODWT to identify trends and noise in intraday currency analysis. Three predictive models, namely Support Vector Regression, Recurrent Neural Network, and Long Short-Term Memory, are applied to relative time series data to predict intraday trading currency trends. The study reveals significant noise presence in three currencies based on MODWT analysis. Additionally, it demonstrates that deep learning techniques, such as LSTM, outperform traditional machine learning approaches in accurately predicting intraday currency trends. This study contributes substantially to the theoretical understanding of international finance and provides practical insights for real-time problem-solving in currency markets. Further, this research adds to the discourse on leveraging sophisticated analytical methods within the domain of business intelligence to enhance decision-making processes in organizations operating within dynamic and complex financial environments.","PeriodicalId":52209,"journal":{"name":"International Journal of Business Intelligence Research","volume":"12 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Business Intelligence Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijbir.346977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this study is to determine the intraday hourly trading trends of currencies using predictive modeling techniques. The study encompasses two distinct intraday time intervals of 30 minutes and 1 hour, analyzing currencies from 8 different countries. It incorporates the use of wavelets MODWT to identify trends and noise in intraday currency analysis. Three predictive models, namely Support Vector Regression, Recurrent Neural Network, and Long Short-Term Memory, are applied to relative time series data to predict intraday trading currency trends. The study reveals significant noise presence in three currencies based on MODWT analysis. Additionally, it demonstrates that deep learning techniques, such as LSTM, outperform traditional machine learning approaches in accurately predicting intraday currency trends. This study contributes substantially to the theoretical understanding of international finance and provides practical insights for real-time problem-solving in currency markets. Further, this research adds to the discourse on leveraging sophisticated analytical methods within the domain of business intelligence to enhance decision-making processes in organizations operating within dynamic and complex financial environments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过机器学习技术确定日内交易货币的趋势框架证据
本研究的目的是利用预测建模技术确定货币的日内小时交易趋势。研究涵盖 30 分钟和 1 小时两个不同的盘中时间间隔,分析 8 个不同国家的货币。研究结合使用了小波 MODWT 来识别日内货币分析中的趋势和噪音。支持向量回归、递归神经网络和长短期记忆这三种预测模型被应用于相对时间序列数据,以预测日内交易货币的趋势。根据 MODWT 分析,该研究揭示了三种货币中存在的显著噪声。此外,它还证明了 LSTM 等深度学习技术在准确预测日内货币趋势方面优于传统的机器学习方法。这项研究极大地促进了对国际金融的理论理解,并为货币市场的实时问题解决提供了实用见解。此外,这项研究还补充了有关利用商业智能领域中的复杂分析方法来加强在动态和复杂金融环境中运行的组织的决策过程的论述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Business Intelligence Research
International Journal of Business Intelligence Research Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
3.90
自引率
0.00%
发文量
8
期刊最新文献
Critical Success Factors for BI Systems Implementation and Delivery Determine Intraday Trading Currency's Trend Framework Evidence From Machine Learning Techniques Assessing Maturity in Data-Driven Culture Business Intelligence: 7th International Conference, CBI 2022, Khouribga, Morocco, May 26–28, 2022, Proceedings Correction to: Game Theoretic Approaches to Mitigate Cloud Security Risks: An Initial Insight
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1