Comprehensive analysis of glulam delamination through finite element modelling considering heat and mass transfer, plasticity and fracture mechanics: a case study using high density hardwood
Peiqing Lu, Benoit P. Gilbert, Chandan Kumar, Robert L. McGavin, Hassan Karampour
{"title":"Comprehensive analysis of glulam delamination through finite element modelling considering heat and mass transfer, plasticity and fracture mechanics: a case study using high density hardwood","authors":"Peiqing Lu, Benoit P. Gilbert, Chandan Kumar, Robert L. McGavin, Hassan Karampour","doi":"10.1007/s00107-024-02107-w","DOIUrl":null,"url":null,"abstract":"<p>With the ongoing emphasis on sustainable and eco-friendly construction, there is a rising demand for high-strength and high-stiffness engineered wood products. This trend presents both opportunities and challenges for the Australia’s hardwood industry, particularly concerning native forest-grown spotted gum (<i>Corymbia citriodora</i>). Glue laminated (glulam) spotted gum beams cannot be confidently commercialised due to the difficulty for its high-density to satisfy the bond integrity criteria (referred to as “delamination test”) for external products in accordance with the Australia and New Zealand Standard AS/NZS 1328.1. For in-depth understanding of the delamination process, an accurate numerical model represents a valuable and time-efficient tool. The aim of this study is to develop and detail such a model, considering heat and mass transfer, drying stresses, plasticity and fracture propagation models, using COMSOL Multiphysics 5.5. The model was validated against a series of wetting and drying experiments on spotted gum glulam, considering both moisture content variation and crack propagation along the gluelines. Results from the validated model showed that delamination is principally due to the tensile stress applied to the gluelines.</p>","PeriodicalId":550,"journal":{"name":"European Journal of Wood and Wood Products","volume":"82 5","pages":"1581 - 1604"},"PeriodicalIF":2.4000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00107-024-02107-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Wood and Wood Products","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s00107-024-02107-w","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
With the ongoing emphasis on sustainable and eco-friendly construction, there is a rising demand for high-strength and high-stiffness engineered wood products. This trend presents both opportunities and challenges for the Australia’s hardwood industry, particularly concerning native forest-grown spotted gum (Corymbia citriodora). Glue laminated (glulam) spotted gum beams cannot be confidently commercialised due to the difficulty for its high-density to satisfy the bond integrity criteria (referred to as “delamination test”) for external products in accordance with the Australia and New Zealand Standard AS/NZS 1328.1. For in-depth understanding of the delamination process, an accurate numerical model represents a valuable and time-efficient tool. The aim of this study is to develop and detail such a model, considering heat and mass transfer, drying stresses, plasticity and fracture propagation models, using COMSOL Multiphysics 5.5. The model was validated against a series of wetting and drying experiments on spotted gum glulam, considering both moisture content variation and crack propagation along the gluelines. Results from the validated model showed that delamination is principally due to the tensile stress applied to the gluelines.
期刊介绍:
European Journal of Wood and Wood Products reports on original research and new developments in the field of wood and wood products and their biological, chemical, physical as well as mechanical and technological properties, processes and uses. Subjects range from roundwood to wood based products, composite materials and structural applications, with related jointing techniques. Moreover, it deals with wood as a chemical raw material, source of energy as well as with inter-disciplinary aspects of environmental assessment and international markets.
European Journal of Wood and Wood Products aims at promoting international scientific communication and transfer of new technologies from research into practice.