Regulating electronic structure of anionic oxygen by Ti4+ doping to stabilize layered Li-rich oxide cathodes for Li-ion batteries

IF 2.9 Q3 CHEMISTRY, PHYSICAL Electronic Structure Pub Date : 2024-07-15 DOI:10.1088/2516-1075/ad6386
Xinyu Zhu, Luqi Hao, Yongjian Li, Lai Chen, Qing Huang, Yun Lu, Ning Li, Yuefeng Su
{"title":"Regulating electronic structure of anionic oxygen by Ti4+ doping to stabilize layered Li-rich oxide cathodes for Li-ion batteries","authors":"Xinyu Zhu, Luqi Hao, Yongjian Li, Lai Chen, Qing Huang, Yun Lu, Ning Li, Yuefeng Su","doi":"10.1088/2516-1075/ad6386","DOIUrl":null,"url":null,"abstract":"\n Layered Li-rich oxide cathodes enable to activate lattice oxygen anions redox in the charge compensation process and provide superior high specific capacity over 250 mAh/g due to their unique configuration, and thus attracting great attentions as promising cathode candidates for Li-ion batteries. However, how to better stabilize the bulk lattice oxygen framework and surface structure, and slow down the release of oxygen, is still major bottleneck to develop high performance Li-rich materials. Transition metal ions with outer d0 electronic configuration have distortable configuration, which can accommodate the local structure and chemical environment of the material, and then improve structural stability. Herein this work, the d0 transition metal Ti4+ is used as doping element to improve the chemical and structural stability, capacity retention and lithium ion diffusion kinetics of Li-rich material. The role of Ti in the material modification is revealed through synchrotron-based soft X-ray absorption spectroscopy, XRD, XPS and electrochemical tests. The improvement in structural stability can be attributed to that Ti doping can adjust the hybridization of O2p and TM3d to regulate the local electronic structure of both bulk lattice oxygen and surface oxygen vacancies. It is hoped that this work should shed light on the development of high-performance cathode materials for Li-ion Batteries.","PeriodicalId":42419,"journal":{"name":"Electronic Structure","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Structure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2516-1075/ad6386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Layered Li-rich oxide cathodes enable to activate lattice oxygen anions redox in the charge compensation process and provide superior high specific capacity over 250 mAh/g due to their unique configuration, and thus attracting great attentions as promising cathode candidates for Li-ion batteries. However, how to better stabilize the bulk lattice oxygen framework and surface structure, and slow down the release of oxygen, is still major bottleneck to develop high performance Li-rich materials. Transition metal ions with outer d0 electronic configuration have distortable configuration, which can accommodate the local structure and chemical environment of the material, and then improve structural stability. Herein this work, the d0 transition metal Ti4+ is used as doping element to improve the chemical and structural stability, capacity retention and lithium ion diffusion kinetics of Li-rich material. The role of Ti in the material modification is revealed through synchrotron-based soft X-ray absorption spectroscopy, XRD, XPS and electrochemical tests. The improvement in structural stability can be attributed to that Ti doping can adjust the hybridization of O2p and TM3d to regulate the local electronic structure of both bulk lattice oxygen and surface oxygen vacancies. It is hoped that this work should shed light on the development of high-performance cathode materials for Li-ion Batteries.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过掺杂 Ti4+ 调节阴离子氧的电子结构,稳定锂离子电池的层状富锂氧化物阴极
层状富锂氧化物阴极能够在电荷补偿过程中激活晶格氧阴离子的氧化还原作用,并因其独特的构型而提供超过 250 mAh/g 的超高比容量,因此作为锂离子电池的候选阴极而备受关注。然而,如何更好地稳定体格氧框架和表面结构,减缓氧的释放,仍然是开发高性能富锂材料的主要瓶颈。外层 d0 电子构型的过渡金属离子具有可畸变构型,能适应材料的局部结构和化学环境,进而提高结构的稳定性。本研究采用 d0 过渡金属 Ti4+ 作为掺杂元素,以改善富锂材料的化学和结构稳定性、容量保持率以及锂离子扩散动力学。通过同步辐射软 X 射线吸收光谱、XRD、XPS 和电化学测试,揭示了 Ti 在材料改性中的作用。结构稳定性的改善可归因于钛的掺杂能调整 O2p 和 TM3d 的杂化,从而调节体格氧和表面氧空位的局部电子结构。希望这项研究能为开发高性能锂离子电池阴极材料带来启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.70
自引率
11.50%
发文量
46
期刊最新文献
Improving the precision of work-function calculations within plane-wave density functional theory Self-similarity of quantum transport in graphene using electrostatic gate and substrate Facilities and practices for linear response Hubbard parameters U and J in Abinit Approaching periodic systems in ensemble density functional theory via finite one-dimensional models Regulating electronic structure of anionic oxygen by Ti4+ doping to stabilize layered Li-rich oxide cathodes for Li-ion batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1