18 A/1020 V p-GaN-gated HEMTs with Isosceles Trapezoidal-Shaped Multi-Finger Structure

IF 1.8 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY ECS Journal of Solid State Science and Technology Pub Date : 2024-07-11 DOI:10.1149/2162-8777/ad620e
Yu-Jun Lai, Dian-Ying Wu, Ya-Han Yang, Yu-Chen Liu, Cheng-Yeu Wu, Meng-Chyi Wu
{"title":"18 A/1020 V p-GaN-gated HEMTs with Isosceles Trapezoidal-Shaped Multi-Finger Structure","authors":"Yu-Jun Lai, Dian-Ying Wu, Ya-Han Yang, Yu-Chen Liu, Cheng-Yeu Wu, Meng-Chyi Wu","doi":"10.1149/2162-8777/ad620e","DOIUrl":null,"url":null,"abstract":"\n In this article, we investigate the effects of gate and drain field plates and isosceles trapezoidal-shaped multi-finger structures on the characteristics of high current p-GaN-gated high-electron-mobility transistors (HEMTs). By optimizing the lengths of gate and drain field plates, the p-GaN-gated HEMTs with 200 μm have a breakdown voltage of 1893 V, a specific on-resistance of 7.0 mΩ-cm2, and a Baliga figure of merit (BFOM) value of 511 MW/cm2. Using the optimized isosceles trapezoidal-shaped multi-finger metallization on the source and drain, the p-GaN-gated HEMT with a 100 mm gate width can reach a current of 2.3 A. Combining all the optimum parameters of field plates and isosceles trapezoidal-shaped multi-finger, the fabricated 600 mm p-GaN-gated HEMT exhibits an output current of 18 A, an on-resistance of 0.7 Ω, and a breakdown voltage of 1020 V. Furthermore, the device also exhibits good thermal stability at high temperatures. These results demonstrate the potential and advantages of p-GaN-gated HEMT for power applications.","PeriodicalId":11496,"journal":{"name":"ECS Journal of Solid State Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Journal of Solid State Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1149/2162-8777/ad620e","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we investigate the effects of gate and drain field plates and isosceles trapezoidal-shaped multi-finger structures on the characteristics of high current p-GaN-gated high-electron-mobility transistors (HEMTs). By optimizing the lengths of gate and drain field plates, the p-GaN-gated HEMTs with 200 μm have a breakdown voltage of 1893 V, a specific on-resistance of 7.0 mΩ-cm2, and a Baliga figure of merit (BFOM) value of 511 MW/cm2. Using the optimized isosceles trapezoidal-shaped multi-finger metallization on the source and drain, the p-GaN-gated HEMT with a 100 mm gate width can reach a current of 2.3 A. Combining all the optimum parameters of field plates and isosceles trapezoidal-shaped multi-finger, the fabricated 600 mm p-GaN-gated HEMT exhibits an output current of 18 A, an on-resistance of 0.7 Ω, and a breakdown voltage of 1020 V. Furthermore, the device also exhibits good thermal stability at high temperatures. These results demonstrate the potential and advantages of p-GaN-gated HEMT for power applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有等腰梯形多指结构的 18 A/1020 V p-GaN 门控 HEMT
本文研究了栅极和漏极场板以及等腰梯形多指结构对大电流 p-GaN 门控高电子迁移率晶体管 (HEMT) 特性的影响。通过优化栅极和漏极场板的长度,200 μm 的 p-GaN 门控 HEMT 的击穿电压为 1893 V,比导通电阻为 7.0 mΩ-cm2,巴利加优越性(Baliga figure of merit,BFOM)值为 511 MW/cm2。结合场板和等腰梯形多指的所有最佳参数,制造出的 600 mm p-GaN 门控 HEMT 输出电流为 18 A,导通电阻为 0.7 Ω,击穿电压为 1020 V。此外,该器件在高温下也表现出良好的热稳定性。这些结果证明了 p-GaN 门控 HEMT 在功率应用方面的潜力和优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ECS Journal of Solid State Science and Technology
ECS Journal of Solid State Science and Technology MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
4.50
自引率
13.60%
发文量
455
期刊介绍: The ECS Journal of Solid State Science and Technology (JSS) was launched in 2012, and publishes outstanding research covering fundamental and applied areas of solid state science and technology, including experimental and theoretical aspects of the chemistry and physics of materials and devices. JSS has five topical interest areas: carbon nanostructures and devices dielectric science and materials electronic materials and processing electronic and photonic devices and systems luminescence and display materials, devices and processing.
期刊最新文献
Structural and Magnetic Properties of Nano Manganite La0.6Sr0.4MnO3 Obtained by Mechanochemical Synthesis Influenced by Preparation Conditions Review—Research Progress of Novel Fluorescent Probes with the Structure of Xanthene as Parent Nucleus Towards ZnO-Based Near-Infra-Red Radiation Detectors: Performance Improvement via Si Nanoclusters Embedment Insight into the Impact of Electron Drift Trajectory on Charge Collection in Silicon Drift Detector Communication—Tunable Lorentz-Type Negative Permittivity of PANI/Epoxy Resin Composites in the Frequency Range from 3 kHz to 1 MHz
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1