Marija Tomaš, Benjamin Radetić, Lucija Radetić, Paula Benjak, Ivana Grčić
{"title":"Gas-Phase Photocatalytic Transformations of Nitric Oxide Using Titanium Dioxide on Glass Fiber Mesh for Real-Scale Application","authors":"Marija Tomaš, Benjamin Radetić, Lucija Radetić, Paula Benjak, Ivana Grčić","doi":"10.3390/nitrogen5030041","DOIUrl":null,"url":null,"abstract":"In this paper, the degradation of nitric oxide (NO) in an annular laboratory reactor is presented. Preliminary experiments were performed in an annular reactor (AR) under simulated solar irradiation. Titanium dioxide (TiO2 P25) was used as a photocatalyst and immobilized on glass fibers mesh (GM) by the sol–gel method prepared from commercially available materials. The aim of the experiments was to remove NO from the air stream. The initial rate constant of the NO photocatalytic degradation was recognized to follow mass-transfer-controlled first-order kinetics. The results confirmed the photocatalytic reduction of NO to molecular nitrogen (N2) and oxidation to nitrate. Therefore, the preliminary results obtained in this work are used for the development of a computational fluid dynamics (CFD) model (COMSOL Multiphysics v6.2). CFD calculations provide a good basis for sizing reactors at the semi-pilot and pilot levels for both indoor and outdoor air purification systems.","PeriodicalId":509275,"journal":{"name":"Nitrogen","volume":"40 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nitrogen","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/nitrogen5030041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, the degradation of nitric oxide (NO) in an annular laboratory reactor is presented. Preliminary experiments were performed in an annular reactor (AR) under simulated solar irradiation. Titanium dioxide (TiO2 P25) was used as a photocatalyst and immobilized on glass fibers mesh (GM) by the sol–gel method prepared from commercially available materials. The aim of the experiments was to remove NO from the air stream. The initial rate constant of the NO photocatalytic degradation was recognized to follow mass-transfer-controlled first-order kinetics. The results confirmed the photocatalytic reduction of NO to molecular nitrogen (N2) and oxidation to nitrate. Therefore, the preliminary results obtained in this work are used for the development of a computational fluid dynamics (CFD) model (COMSOL Multiphysics v6.2). CFD calculations provide a good basis for sizing reactors at the semi-pilot and pilot levels for both indoor and outdoor air purification systems.