Fatemeh Ahmadi, Daniel Kallinger, August Starzinger, Maximilian Lackner
Hemp (Cannabis sativa L.), renowned for its applications in environmental, industrial, and medicinal fields, is critically evaluated in this comprehensive review focusing on the impacts of chemical and organic fertilizers on its cultivation. As hemp re-emerges as a crop of economic significance, the choice between chemical and organic fertilization methods plays a crucial role in determining not only yield but also the quality and sustainability of production. This article examines the botanical characteristics of hemp, optimal growth conditions, and the essential biochemical processes for its cultivation. A detailed comparative analysis is provided, revealing that chemical fertilizers, while increasing yield by up to 20% compared to organic options, may compromise the concentration of key phytochemicals such as cannabidiol by approximately 10%, highlighting a trade-off between yield and product quality. The review presents quantitative assessments of nitrogen (N), phosphorus (P), and potassium (K) from both fertilizer types, noting that K significantly influences the synthesis of terpenes and cannabinoids, making it the most impactful element in the context of medicinal and aromatic hemp varieties. Optimal rates and timing of application for these nutrients are discussed, with a focus on maximizing efficiency during the flowering stage, where nutrient uptake directly correlates with cannabinoid production. Furthermore, the challenges associated with the U.S. industrial hemp market are addressed, noting that reducing production costs and improving processing infrastructure is essential for sustaining industry growth, especially given the slow expansion in fiber and cannabidiol markets due to processing bottlenecks. The review concludes that while chemical fertilizers may offer immediate agronomic benefits, transitioning towards organic practices is essential for long-term environmental sustainability and market viability. The future of the hemp industry, while promising, will depend heavily on advancements in genetic engineering, crop management strategies, and regulatory frameworks that better support sustainable cultivation practices. This nuanced approach is vital for the industry to navigate the complex trade-offs between productivity, environmental health, and economic viability in the global market.
{"title":"Hemp (Cannabis salvia L.) Cultivation: Chemical Fertilizers or Organic Technologies, a Comprehensive Review","authors":"Fatemeh Ahmadi, Daniel Kallinger, August Starzinger, Maximilian Lackner","doi":"10.3390/nitrogen5030042","DOIUrl":"https://doi.org/10.3390/nitrogen5030042","url":null,"abstract":"Hemp (Cannabis sativa L.), renowned for its applications in environmental, industrial, and medicinal fields, is critically evaluated in this comprehensive review focusing on the impacts of chemical and organic fertilizers on its cultivation. As hemp re-emerges as a crop of economic significance, the choice between chemical and organic fertilization methods plays a crucial role in determining not only yield but also the quality and sustainability of production. This article examines the botanical characteristics of hemp, optimal growth conditions, and the essential biochemical processes for its cultivation. A detailed comparative analysis is provided, revealing that chemical fertilizers, while increasing yield by up to 20% compared to organic options, may compromise the concentration of key phytochemicals such as cannabidiol by approximately 10%, highlighting a trade-off between yield and product quality. The review presents quantitative assessments of nitrogen (N), phosphorus (P), and potassium (K) from both fertilizer types, noting that K significantly influences the synthesis of terpenes and cannabinoids, making it the most impactful element in the context of medicinal and aromatic hemp varieties. Optimal rates and timing of application for these nutrients are discussed, with a focus on maximizing efficiency during the flowering stage, where nutrient uptake directly correlates with cannabinoid production. Furthermore, the challenges associated with the U.S. industrial hemp market are addressed, noting that reducing production costs and improving processing infrastructure is essential for sustaining industry growth, especially given the slow expansion in fiber and cannabidiol markets due to processing bottlenecks. The review concludes that while chemical fertilizers may offer immediate agronomic benefits, transitioning towards organic practices is essential for long-term environmental sustainability and market viability. The future of the hemp industry, while promising, will depend heavily on advancements in genetic engineering, crop management strategies, and regulatory frameworks that better support sustainable cultivation practices. This nuanced approach is vital for the industry to navigate the complex trade-offs between productivity, environmental health, and economic viability in the global market.","PeriodicalId":509275,"journal":{"name":"Nitrogen","volume":" 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141826014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marija Tomaš, Benjamin Radetić, Lucija Radetić, Paula Benjak, Ivana Grčić
In this paper, the degradation of nitric oxide (NO) in an annular laboratory reactor is presented. Preliminary experiments were performed in an annular reactor (AR) under simulated solar irradiation. Titanium dioxide (TiO2 P25) was used as a photocatalyst and immobilized on glass fibers mesh (GM) by the sol–gel method prepared from commercially available materials. The aim of the experiments was to remove NO from the air stream. The initial rate constant of the NO photocatalytic degradation was recognized to follow mass-transfer-controlled first-order kinetics. The results confirmed the photocatalytic reduction of NO to molecular nitrogen (N2) and oxidation to nitrate. Therefore, the preliminary results obtained in this work are used for the development of a computational fluid dynamics (CFD) model (COMSOL Multiphysics v6.2). CFD calculations provide a good basis for sizing reactors at the semi-pilot and pilot levels for both indoor and outdoor air purification systems.
{"title":"Gas-Phase Photocatalytic Transformations of Nitric Oxide Using Titanium Dioxide on Glass Fiber Mesh for Real-Scale Application","authors":"Marija Tomaš, Benjamin Radetić, Lucija Radetić, Paula Benjak, Ivana Grčić","doi":"10.3390/nitrogen5030041","DOIUrl":"https://doi.org/10.3390/nitrogen5030041","url":null,"abstract":"In this paper, the degradation of nitric oxide (NO) in an annular laboratory reactor is presented. Preliminary experiments were performed in an annular reactor (AR) under simulated solar irradiation. Titanium dioxide (TiO2 P25) was used as a photocatalyst and immobilized on glass fibers mesh (GM) by the sol–gel method prepared from commercially available materials. The aim of the experiments was to remove NO from the air stream. The initial rate constant of the NO photocatalytic degradation was recognized to follow mass-transfer-controlled first-order kinetics. The results confirmed the photocatalytic reduction of NO to molecular nitrogen (N2) and oxidation to nitrate. Therefore, the preliminary results obtained in this work are used for the development of a computational fluid dynamics (CFD) model (COMSOL Multiphysics v6.2). CFD calculations provide a good basis for sizing reactors at the semi-pilot and pilot levels for both indoor and outdoor air purification systems.","PeriodicalId":509275,"journal":{"name":"Nitrogen","volume":"40 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141660584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Karla Janeth Martínez-Macias, A. R. Martínez-Sifuentes, Selenne Yuridia Márquez-Guerrero, Arturo Reyes-González, P. Preciado-Rangel, Pablo Yescas-Coronado, Ramón Trucíos-Caciano
Nitrogen is one of the most important macronutrients for crops, and, in conjunction with artificial intelligence algorithms, it is possible to estimate it with the aid of vegetation indices through remote sensing. Various indices were calculated and those with a correlation of ≥0.7 were selected for subsequent use in random forest, gradient boosting, and artificial neural networks to determine their relationship with nitrogen levels measured in the laboratory. Random forest showed no relationship, yielding an R2 of zero; and gradient boosting and the classical method were similar with 0.7; whereas artificial neural networks yielded the best results with an R2 of 0.93. Thus, estimating nitrogen levels using this algorithm is reliable, by feeding it with data from the Modified Chlorophyll Absorption Ratio Index, Transformed Chlorophyll Absorption Reflectance Index, Modified Chlorophyll Absorption Ratio Index/Optimized Soil Adjusted Vegetation Index, and Transformed Chlorophyll Absorption Ratio Index/Optimized Soil Adjusted Vegetation Index
{"title":"Machine-Learning Approaches in N Estimations of Fig Cultivations Based on Satellite-Born Vegetation Indices","authors":"Karla Janeth Martínez-Macias, A. R. Martínez-Sifuentes, Selenne Yuridia Márquez-Guerrero, Arturo Reyes-González, P. Preciado-Rangel, Pablo Yescas-Coronado, Ramón Trucíos-Caciano","doi":"10.3390/nitrogen5030040","DOIUrl":"https://doi.org/10.3390/nitrogen5030040","url":null,"abstract":"Nitrogen is one of the most important macronutrients for crops, and, in conjunction with artificial intelligence algorithms, it is possible to estimate it with the aid of vegetation indices through remote sensing. Various indices were calculated and those with a correlation of ≥0.7 were selected for subsequent use in random forest, gradient boosting, and artificial neural networks to determine their relationship with nitrogen levels measured in the laboratory. Random forest showed no relationship, yielding an R2 of zero; and gradient boosting and the classical method were similar with 0.7; whereas artificial neural networks yielded the best results with an R2 of 0.93. Thus, estimating nitrogen levels using this algorithm is reliable, by feeding it with data from the Modified Chlorophyll Absorption Ratio Index, Transformed Chlorophyll Absorption Reflectance Index, Modified Chlorophyll Absorption Ratio Index/Optimized Soil Adjusted Vegetation Index, and Transformed Chlorophyll Absorption Ratio Index/Optimized Soil Adjusted Vegetation Index","PeriodicalId":509275,"journal":{"name":"Nitrogen","volume":"26 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141659825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Reducing fertilizer-N rate, applying a nitrification inhibitor (NI), and incorporating straw are widely recommended to improve N use efficiency of crops and decrease N losses. A field 15N tracer study was conducted to compare their effectiveness on fertilizer-N fates during the maize growing season in Northeast China. The following six treatments were used: (1) no N fertilization (control); (2) 200 kg urea-N ha−1 (100%N); (3) 200 kg urea-N ha−1 and straw (100%N + S); (4) 160 kg urea-N ha−1 (80%N); (5) 160 kg urea-N ha−1 and NI (Nitrapyrin in this study) (80%N + NI); and (6) 160 kg urea-N ha−1, NI, and straw (80%N + NI + S). The results showed that the five N fertilization treatments yielded 16–25% more grain and 39–60% more crop N uptake than the control, but the differences among the five treatments were not statistically significant. Compared with the 100%N, 20% fertilizer-N reduction (80%N) decreased the 15N concentration in topsoil and plant pools but increased the proportion of plant 15N recovery at harvesting (NUE15N, 60% vs. 50%). Compared with the 80%N, NI co-application (80%N + NI) delayed soil nitrification and increased soil 15N retention at harvesting (52% vs. 36%), thereby decreasing NUE15N significantly. Straw incorporation decreased fertilizer-N retention in soil compared with NI co-application because it promoted NUE15N significantly. In conclusion, the results demonstrate that NI and straw additions are efficient strategies for stabilizing fertilizer-N in soils and potentially minimizing N loss; however, their effects on NUE15N vary and the related mechanism must be further clarified in long-term trials.
{"title":"Evaluating the Effects of Reduced N Application, a Nitrification Inhibitor, and Straw Incorporation on Fertilizer-N Fates in the Maize Growing Season: A Field 15N Tracer Study","authors":"Z. Quan, Shanlong Li, Zhifeng Xun, Chang Liu, Dong Liu, Yanzhi Wang, Xinghan Zhao, Ming Yang, Caiyan Lu, Xin Chen, Yunting Fang","doi":"10.3390/nitrogen5030039","DOIUrl":"https://doi.org/10.3390/nitrogen5030039","url":null,"abstract":"Reducing fertilizer-N rate, applying a nitrification inhibitor (NI), and incorporating straw are widely recommended to improve N use efficiency of crops and decrease N losses. A field 15N tracer study was conducted to compare their effectiveness on fertilizer-N fates during the maize growing season in Northeast China. The following six treatments were used: (1) no N fertilization (control); (2) 200 kg urea-N ha−1 (100%N); (3) 200 kg urea-N ha−1 and straw (100%N + S); (4) 160 kg urea-N ha−1 (80%N); (5) 160 kg urea-N ha−1 and NI (Nitrapyrin in this study) (80%N + NI); and (6) 160 kg urea-N ha−1, NI, and straw (80%N + NI + S). The results showed that the five N fertilization treatments yielded 16–25% more grain and 39–60% more crop N uptake than the control, but the differences among the five treatments were not statistically significant. Compared with the 100%N, 20% fertilizer-N reduction (80%N) decreased the 15N concentration in topsoil and plant pools but increased the proportion of plant 15N recovery at harvesting (NUE15N, 60% vs. 50%). Compared with the 80%N, NI co-application (80%N + NI) delayed soil nitrification and increased soil 15N retention at harvesting (52% vs. 36%), thereby decreasing NUE15N significantly. Straw incorporation decreased fertilizer-N retention in soil compared with NI co-application because it promoted NUE15N significantly. In conclusion, the results demonstrate that NI and straw additions are efficient strategies for stabilizing fertilizer-N in soils and potentially minimizing N loss; however, their effects on NUE15N vary and the related mechanism must be further clarified in long-term trials.","PeriodicalId":509275,"journal":{"name":"Nitrogen","volume":" 22","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141676167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marilena M. Luciano, Rafaella M. T. Espeçoto, R. F. Benassi, L. C. Schiesari, W. Smith, Â. T. Fushita, R. Taniwaki
Urban sprawl poses a significant threat to urban stream water quality due to impermeabilization, reduced vegetation cover, and the release of diffuse pollutants. This study evaluates water quality in seven catchments in Santo André, SP, considering seasonality. Nutrient concentrations and in situ measurements were taken during both dry and rainy seasons. Comparisons were made using Kruskal–Wallis and Mann–Whitney tests. Streams showed significant differences in relation to water quality parameters. The Carapetuba, Jundiaí, and Apiaí streams were most adversely affected, underscoring the need for urgent water quality intervention (water conductivity above 500 μS/cm, dissolved oxygen below 2 mg/L, total dissolved carbon above 50 mg/L, and total dissolved nitrogen above 25 mg/L). Significant differences were observed across seasons. The dry season showed elevated temperatures (above 25 °C) and increased total dissolved carbon (above 50 mg/L) and nitrogen concentrations (above 30 mg/L), indicating reduced dilution effects from rainfall and heightened organic contamination. Conversely, the wet season demonstrated lower nutrient concentrations, emphasizing seasonal dynamics. Sustained, long-term monitoring of urban streams in Santo André and the implementation of sewage collection and treatment in irregular settlements are recommended. These measures are essential to mitigate the adverse impacts of urban expansion on water quality.
{"title":"Spatiotemporal Dynamics of Carbon and Nitrogen in Subtropical Urban Streams (Santo André, SP, Brazil)","authors":"Marilena M. Luciano, Rafaella M. T. Espeçoto, R. F. Benassi, L. C. Schiesari, W. Smith, Â. T. Fushita, R. Taniwaki","doi":"10.3390/nitrogen5030038","DOIUrl":"https://doi.org/10.3390/nitrogen5030038","url":null,"abstract":"Urban sprawl poses a significant threat to urban stream water quality due to impermeabilization, reduced vegetation cover, and the release of diffuse pollutants. This study evaluates water quality in seven catchments in Santo André, SP, considering seasonality. Nutrient concentrations and in situ measurements were taken during both dry and rainy seasons. Comparisons were made using Kruskal–Wallis and Mann–Whitney tests. Streams showed significant differences in relation to water quality parameters. The Carapetuba, Jundiaí, and Apiaí streams were most adversely affected, underscoring the need for urgent water quality intervention (water conductivity above 500 μS/cm, dissolved oxygen below 2 mg/L, total dissolved carbon above 50 mg/L, and total dissolved nitrogen above 25 mg/L). Significant differences were observed across seasons. The dry season showed elevated temperatures (above 25 °C) and increased total dissolved carbon (above 50 mg/L) and nitrogen concentrations (above 30 mg/L), indicating reduced dilution effects from rainfall and heightened organic contamination. Conversely, the wet season demonstrated lower nutrient concentrations, emphasizing seasonal dynamics. Sustained, long-term monitoring of urban streams in Santo André and the implementation of sewage collection and treatment in irregular settlements are recommended. These measures are essential to mitigate the adverse impacts of urban expansion on water quality.","PeriodicalId":509275,"journal":{"name":"Nitrogen","volume":"16 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141684927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Molla, A. Solomou, Anastasia Fountouli, Evaggelia Chatzikirou, Emmanouil Stamatakis, Petros Stamatakis, E. Skoufogianni
In recent years, there has been a growing tendency towards using organic fertilizers instead of chemical ones. This study aimed to evaluate the influence of the organic fertilizer, Prima Humica, on agronomic characteristics and herbaceous plant diversity on Origanum dictamnus (Dittany) cultivation. A field experiment was carried out in Kalo Xorio (Lasithi, Crete) and included three different nitrogen organic fertilization schemes: 0 g/plant (T0—unfertilized), 300 g/plot (T1), and 600 g/plot (T2). Plant height, fresh and dry weight, Leaf Area Index (LAI), and plant diversity during the growing season were measured. The results showed that when the T2 treatment was compared with the unfertilized and the T1 fertilizer, the increase in plant height ranged between 9.18% and 40.61%. Moreover, the total fresh and dry weight were positively affected by the T2 treatment. The total fresh and dry weight varied from 111.6 to 239.8 g per plant and from 36.7 to 77.6 g per plant, respectively. Furthermore, LAI was ameliorated using the T2 fertilizer scheme. Concerning plant diversity, a key finding in this study is that the O. dictamnus ecosystem favors herbaceous plant species richness and Shannon’s diversity index. In total, 18 plant species in the O. dictamnus ecosystem were recorded in the study area. The most frequently occurring plants were Anthemis arvensis L. and Piptatherum miliaceum (L.) Coss. Finally, the highest Shannon’s diversity index of herbaceous plants was detected using the T2 fertilizer scheme.
{"title":"Influence of an Organic Fertilizer on Agronomic Characteristics and Herbaceous Plant Diversity in a Greek Ecosystem: The Case of Cretan Dittany (Origanum dictamnus L.)","authors":"A. Molla, A. Solomou, Anastasia Fountouli, Evaggelia Chatzikirou, Emmanouil Stamatakis, Petros Stamatakis, E. Skoufogianni","doi":"10.3390/nitrogen5020027","DOIUrl":"https://doi.org/10.3390/nitrogen5020027","url":null,"abstract":"In recent years, there has been a growing tendency towards using organic fertilizers instead of chemical ones. This study aimed to evaluate the influence of the organic fertilizer, Prima Humica, on agronomic characteristics and herbaceous plant diversity on Origanum dictamnus (Dittany) cultivation. A field experiment was carried out in Kalo Xorio (Lasithi, Crete) and included three different nitrogen organic fertilization schemes: 0 g/plant (T0—unfertilized), 300 g/plot (T1), and 600 g/plot (T2). Plant height, fresh and dry weight, Leaf Area Index (LAI), and plant diversity during the growing season were measured. The results showed that when the T2 treatment was compared with the unfertilized and the T1 fertilizer, the increase in plant height ranged between 9.18% and 40.61%. Moreover, the total fresh and dry weight were positively affected by the T2 treatment. The total fresh and dry weight varied from 111.6 to 239.8 g per plant and from 36.7 to 77.6 g per plant, respectively. Furthermore, LAI was ameliorated using the T2 fertilizer scheme. Concerning plant diversity, a key finding in this study is that the O. dictamnus ecosystem favors herbaceous plant species richness and Shannon’s diversity index. In total, 18 plant species in the O. dictamnus ecosystem were recorded in the study area. The most frequently occurring plants were Anthemis arvensis L. and Piptatherum miliaceum (L.) Coss. Finally, the highest Shannon’s diversity index of herbaceous plants was detected using the T2 fertilizer scheme.","PeriodicalId":509275,"journal":{"name":"Nitrogen","volume":"118 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140987676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dairy manure adds a substantial amount of nitrogen to wastewater due to its high levels of associated nutrients. Removal and recovery of ammonia nitrogen (NH3-N) from raw liquid dairy manure (RLDM) is greatly valued. This study was focused on the vacuum thermal stripping–acid absorption (VTS-AA) process for NH3-N from RLDM, followed by modeling and optimization. Using the response surface methodology (RSM)-based central composite design (CCD) approach, the critical operational parameters of the vacuum thermal stripping process, including temperature (50–70 °C), pH (9–11), vacuum pressure (35–55 kPa), and treatment time (60–90 min), were optimized. With the specified parameters set at temperature 69.9 °C, pH 10.5, vacuum pressure 53.5 kPa, and treatment time 64.2 min, the NH3-N removal efficiency attained was 98.58 ± 1.05%, aligning closely with the model prediction. Furthermore, the recovered ammonium sulfate ((NH4)2SO4) closely matched their commercial counterparts, confirming the effectiveness of the VTS-AA process in recovering NH3-N from RLDM. The distinct advantage of the employed technology lies in the concurrent energy demand reduction achieved by introducing a vacuum system. These findings contribute valuable insights into the practical implementation of the VTS-AA process for treating raw dairy manure, particularly in large-scale operational contexts.
{"title":"Optimization of Ammonia Nitrogen Removal and Recovery from Raw Liquid Dairy Manure Using Vacuum Thermal Stripping and Acid Absorption Process: A Modeling Approach Using Response Surface Methodology","authors":"Srijana Sapkota, Arif Reza, Lide Chen","doi":"10.3390/nitrogen5020026","DOIUrl":"https://doi.org/10.3390/nitrogen5020026","url":null,"abstract":"Dairy manure adds a substantial amount of nitrogen to wastewater due to its high levels of associated nutrients. Removal and recovery of ammonia nitrogen (NH3-N) from raw liquid dairy manure (RLDM) is greatly valued. This study was focused on the vacuum thermal stripping–acid absorption (VTS-AA) process for NH3-N from RLDM, followed by modeling and optimization. Using the response surface methodology (RSM)-based central composite design (CCD) approach, the critical operational parameters of the vacuum thermal stripping process, including temperature (50–70 °C), pH (9–11), vacuum pressure (35–55 kPa), and treatment time (60–90 min), were optimized. With the specified parameters set at temperature 69.9 °C, pH 10.5, vacuum pressure 53.5 kPa, and treatment time 64.2 min, the NH3-N removal efficiency attained was 98.58 ± 1.05%, aligning closely with the model prediction. Furthermore, the recovered ammonium sulfate ((NH4)2SO4) closely matched their commercial counterparts, confirming the effectiveness of the VTS-AA process in recovering NH3-N from RLDM. The distinct advantage of the employed technology lies in the concurrent energy demand reduction achieved by introducing a vacuum system. These findings contribute valuable insights into the practical implementation of the VTS-AA process for treating raw dairy manure, particularly in large-scale operational contexts.","PeriodicalId":509275,"journal":{"name":"Nitrogen","volume":" 16","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140996699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ivana Varga, Antonela Markulj Kulundžić, Monika Tkalec Kojić, M. Antunović
There has always been a specific focus on nitrogen fertilization in sugar beet production due to its important effect on sugar beet root yield and quality. For stable sugar beet growth and satisfactory root yield and quality, balanced N fertilization is crucial. Thus, this study aimed to investigate spring N fertilization in two seasons as the following treatments: N0—control, N1—only pre-sowing fertilization, and N2—pre-sowing with topdressing. Four different genotypes were included in the study (Serenada, Colonia, Fred, and Danton). The experiment was set up in a plain area, belonging to the temperate climate zone in Eastern Croatia (Županja and Vrbanja), with the long-term mean (LTM) (March–October) air temperature around 16 °C and the total precipitation of 515 mm. Pre-sowing N fertilization had a smaller impact on root yield in the year with higher precipitation (31% higher than LTM). Therefore, the average yields with pre-sowing fertilization (N1) and pre-sowing fertilization with top dressing (N2) were very similar and were only 7% higher than those of the control. In a season with less rainfall (29% less than LTM), pre-sowing fertilization with top dressing (N2) had a more pronounced effect on the increase in sugar beet root yield, which was 17% higher compared to that of the control treatment. The sugar beet sucrose content and quality parameters (brei impurities, loss of sugar in molasses, extractable sugar) differed when N fertilization was applied among locations in both seasons. The white sugar yield was the highest at N2 treatment with pre-sowing and topdressing N fertilization. In general, according to the average of all locations and years of research, the Serenada hybrid achieved the highest average root yield (81.1 t ha−1), while Colonia exhibited the highest root sugar content (14.5%) and white sugar yield (9.7 t ha−1).
{"title":"Does the Amount of Pre-Sowing Nitrogen Fertilization Affect Sugar Beet Root Yield and Quality of Different Genotypes?","authors":"Ivana Varga, Antonela Markulj Kulundžić, Monika Tkalec Kojić, M. Antunović","doi":"10.3390/nitrogen5020025","DOIUrl":"https://doi.org/10.3390/nitrogen5020025","url":null,"abstract":"There has always been a specific focus on nitrogen fertilization in sugar beet production due to its important effect on sugar beet root yield and quality. For stable sugar beet growth and satisfactory root yield and quality, balanced N fertilization is crucial. Thus, this study aimed to investigate spring N fertilization in two seasons as the following treatments: N0—control, N1—only pre-sowing fertilization, and N2—pre-sowing with topdressing. Four different genotypes were included in the study (Serenada, Colonia, Fred, and Danton). The experiment was set up in a plain area, belonging to the temperate climate zone in Eastern Croatia (Županja and Vrbanja), with the long-term mean (LTM) (March–October) air temperature around 16 °C and the total precipitation of 515 mm. Pre-sowing N fertilization had a smaller impact on root yield in the year with higher precipitation (31% higher than LTM). Therefore, the average yields with pre-sowing fertilization (N1) and pre-sowing fertilization with top dressing (N2) were very similar and were only 7% higher than those of the control. In a season with less rainfall (29% less than LTM), pre-sowing fertilization with top dressing (N2) had a more pronounced effect on the increase in sugar beet root yield, which was 17% higher compared to that of the control treatment. The sugar beet sucrose content and quality parameters (brei impurities, loss of sugar in molasses, extractable sugar) differed when N fertilization was applied among locations in both seasons. The white sugar yield was the highest at N2 treatment with pre-sowing and topdressing N fertilization. In general, according to the average of all locations and years of research, the Serenada hybrid achieved the highest average root yield (81.1 t ha−1), while Colonia exhibited the highest root sugar content (14.5%) and white sugar yield (9.7 t ha−1).","PeriodicalId":509275,"journal":{"name":"Nitrogen","volume":" 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140998624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Magdalena A. Ramírez-Sandoval, N. Loick, Dante E. Pinochet, M. López‐Aizpún, M. J. Rivero, L. Cárdenas
Agricultural soils account for about 60% of the global atmospheric emissions of the potent greenhouse gas nitrous oxide (N2O). One of the main processes producing N2O is denitrification, which occurs under oxygen-limiting conditions when carbon is readily available. On grazed pastures, urine patches create ideal conditions for denitrification, especially in soils with high organic matter content, like Andisols. This lab study looks at the effects of Urine-urea-N load on the Andisol potential to emit N2O. For this, we investigated the effects of three levels of urea-N concentrations in cow urine on emissions of N2O, N2, and CO2 under controlled conditions optimised for denitrification to occur. Results show total N2O emissions increased with increasing urine-N concentration and indicate that denitrification was the main N2O-producing process during the first 2–3 days after urine application, though it was most likely soil native N rather than urine-N being utilised at this stage. An increase in soil nitrate indicates that a second peak of N2O emissions was most likely due to the nitrification of ammonium hydrolysed from the added urine, showing that nitrification and denitrification have the potential to play a big part in N losses and greenhouse gas production from these soils.
农业土壤排放的强效温室气体一氧化二氮(N2O)约占全球大气排放量的 60%。产生一氧化二氮的主要过程之一是反硝化作用,它是在氧气有限的条件下,在碳容易获得的情况下发生的。在放牧的牧场上,尿液斑块为反硝化创造了理想的条件,尤其是在有机质含量较高的土壤中,如安第斯土壤。本实验室研究探讨了尿素-氮负荷对安第斯溶岩释放一氧化二氮潜力的影响。为此,我们研究了牛尿中三种浓度水平的脲-氮对 N2O、N2 和 CO2 排放的影响。结果表明,随着尿素-氮浓度的增加,N2O的总排放量也在增加,并表明在施用尿液后的最初2-3天内,反硝化作用是产生N2O的主要过程,尽管在这一阶段利用的很可能是土壤中的原生氮而不是尿素-氮。土壤硝酸盐的增加表明,N2O 排放的第二个高峰很可能是由添加的尿液中水解的铵的硝化作用造成的,这表明硝化和反硝化作用有可能在这些土壤的氮损失和温室气体产生中发挥重要作用。
{"title":"N Losses from an Andisol via Gaseous N2O and N2 Emissions Increase with Increasing Ruminant Urinary–N Deposition Rate","authors":"Magdalena A. Ramírez-Sandoval, N. Loick, Dante E. Pinochet, M. López‐Aizpún, M. J. Rivero, L. Cárdenas","doi":"10.3390/nitrogen5020017","DOIUrl":"https://doi.org/10.3390/nitrogen5020017","url":null,"abstract":"Agricultural soils account for about 60% of the global atmospheric emissions of the potent greenhouse gas nitrous oxide (N2O). One of the main processes producing N2O is denitrification, which occurs under oxygen-limiting conditions when carbon is readily available. On grazed pastures, urine patches create ideal conditions for denitrification, especially in soils with high organic matter content, like Andisols. This lab study looks at the effects of Urine-urea-N load on the Andisol potential to emit N2O. For this, we investigated the effects of three levels of urea-N concentrations in cow urine on emissions of N2O, N2, and CO2 under controlled conditions optimised for denitrification to occur. Results show total N2O emissions increased with increasing urine-N concentration and indicate that denitrification was the main N2O-producing process during the first 2–3 days after urine application, though it was most likely soil native N rather than urine-N being utilised at this stage. An increase in soil nitrate indicates that a second peak of N2O emissions was most likely due to the nitrification of ammonium hydrolysed from the added urine, showing that nitrification and denitrification have the potential to play a big part in N losses and greenhouse gas production from these soils.","PeriodicalId":509275,"journal":{"name":"Nitrogen","volume":" 27","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140213343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. A. Ramírez-Estrada, Esteban Sánchez, M. A. Flores-Córdova, Celia Chávez-Mendoza, Sandra PÉREZ-ÁLVAREZ, R. M. Yáñez-Muñoz
The low efficiency of nitrogen (N) fertilizers is a frequent problem in agriculture that impacts the environment. Omeprazole (OMP) has been reported to promote N uptake and assimilation in tomato, basil, and corn. However, information about the effect of omeprazole on N assimilation, recovery, and N use efficiency parameters for bean plants is limited. Therefore, the objective of the present study was to determine the effect of foliar applications of OMP at 0, 1, 10, and 100 µM on nitrogen assimilation, growth, yield, nitrogen use efficiency parameters, and recovery percentage in green bean plants. Green bean plants cv. Strike grown in pots were used. Biomass, yield, nitrate reductase activity, photosynthetic pigments concentration, soluble amino acids and protein concentrations, total nitrogen concentration, nitrogen use efficiency parameters, and nitrogen recovery were analyzed. The results obtained indicate that the application of OMP at 1 µM increased yield and biomass, promoted N assimilation through higher NR enzyme activity, higher amino acid concentration, higher N use efficiency coefficient, and allowed a more efficient nitrogen recovery percentage.
{"title":"Can Foliar-Applied Omeprazole Improve the Yield, Assimilation, Recovery and Nitrogen Use Efficiency in Bean Plants?","authors":"C. A. Ramírez-Estrada, Esteban Sánchez, M. A. Flores-Córdova, Celia Chávez-Mendoza, Sandra PÉREZ-ÁLVAREZ, R. M. Yáñez-Muñoz","doi":"10.3390/nitrogen5010015","DOIUrl":"https://doi.org/10.3390/nitrogen5010015","url":null,"abstract":"The low efficiency of nitrogen (N) fertilizers is a frequent problem in agriculture that impacts the environment. Omeprazole (OMP) has been reported to promote N uptake and assimilation in tomato, basil, and corn. However, information about the effect of omeprazole on N assimilation, recovery, and N use efficiency parameters for bean plants is limited. Therefore, the objective of the present study was to determine the effect of foliar applications of OMP at 0, 1, 10, and 100 µM on nitrogen assimilation, growth, yield, nitrogen use efficiency parameters, and recovery percentage in green bean plants. Green bean plants cv. Strike grown in pots were used. Biomass, yield, nitrate reductase activity, photosynthetic pigments concentration, soluble amino acids and protein concentrations, total nitrogen concentration, nitrogen use efficiency parameters, and nitrogen recovery were analyzed. The results obtained indicate that the application of OMP at 1 µM increased yield and biomass, promoted N assimilation through higher NR enzyme activity, higher amino acid concentration, higher N use efficiency coefficient, and allowed a more efficient nitrogen recovery percentage.","PeriodicalId":509275,"journal":{"name":"Nitrogen","volume":"109 14","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140250519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}