Enhancing mobile robot navigation: integrating reactive autonomy through deep learning and fuzzy behavior

Julián López-Velásquez, Gustavo Alonso Acosta-Amaya, J. A. Jiménez-Builes
{"title":"Enhancing mobile robot navigation: integrating reactive autonomy through deep learning and fuzzy behavior","authors":"Julián López-Velásquez, Gustavo Alonso Acosta-Amaya, J. A. Jiménez-Builes","doi":"10.24050/reia.v21i42.1764","DOIUrl":null,"url":null,"abstract":"Objective: This study aimed to develop a control architecture for reactive autonomous navigation of a mobile robot by integrating Deep Learning techniques and fuzzy behaviors based on traffic signal recognition. Materials: The research utilized transfer learning with the Inception V3 network as a base for training a neural network to identify traffic signals. The experiments were conducted using a Donkey-Car, an Ackermann-steering-type open-source mobile robot, with inherent computational limitations. Results: The implementation of the transfer learning technique yielded a satisfactory result, achieving a high accuracy of 96.2% in identifying traffic signals. However, challenges were encountered due to delays in frames per second (FPS) during testing tracks, attributed to the Raspberry Pi's limited computational capacity. Conclusions: By combining Deep Learning and fuzzy behaviors, the study demonstrated the effectiveness of the control architecture in enhancing the robot's autonomous navigation capabilities. The integration of pre-trained models and fuzzy logic provided adaptability and responsiveness to dynamic traffic scenarios. Future research could focus on optimizing system parameters and exploring applications in more complex environments to further advance autonomous robotics and artificial intelligence technologies.","PeriodicalId":21275,"journal":{"name":"Revista EIA","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista EIA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24050/reia.v21i42.1764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: This study aimed to develop a control architecture for reactive autonomous navigation of a mobile robot by integrating Deep Learning techniques and fuzzy behaviors based on traffic signal recognition. Materials: The research utilized transfer learning with the Inception V3 network as a base for training a neural network to identify traffic signals. The experiments were conducted using a Donkey-Car, an Ackermann-steering-type open-source mobile robot, with inherent computational limitations. Results: The implementation of the transfer learning technique yielded a satisfactory result, achieving a high accuracy of 96.2% in identifying traffic signals. However, challenges were encountered due to delays in frames per second (FPS) during testing tracks, attributed to the Raspberry Pi's limited computational capacity. Conclusions: By combining Deep Learning and fuzzy behaviors, the study demonstrated the effectiveness of the control architecture in enhancing the robot's autonomous navigation capabilities. The integration of pre-trained models and fuzzy logic provided adaptability and responsiveness to dynamic traffic scenarios. Future research could focus on optimizing system parameters and exploring applications in more complex environments to further advance autonomous robotics and artificial intelligence technologies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增强移动机器人导航能力:通过深度学习和模糊行为整合反应式自主能力
研究目的本研究旨在通过整合深度学习技术和基于交通信号识别的模糊行为,为移动机器人的反应式自主导航开发一种控制架构。材料本研究以 Inception V3 网络为基础,利用迁移学习训练神经网络来识别交通信号。实验使用阿克曼转向型开源移动机器人 "驴车"(Donkey-Car)进行,该机器人具有固有的计算局限性。实验结果迁移学习技术的实施取得了令人满意的结果,识别交通信号的准确率高达 96.2%。然而,由于 Raspberry Pi 的计算能力有限,在测试轨道时遇到了每秒帧数(FPS)延迟的挑战。结论通过结合深度学习和模糊行为,该研究证明了控制架构在增强机器人自主导航能力方面的有效性。预训练模型和模糊逻辑的整合提供了对动态交通场景的适应性和响应能力。未来的研究可侧重于优化系统参数和探索在更复杂环境中的应用,以进一步推动自主机器人和人工智能技术的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
31
审稿时长
30 weeks
期刊最新文献
Modelado y parametrización de una columna de adsorción para la remoción de níquel utilizando ingeniería de procesos asistida por computador Evaluación de la producción de tilapia roja (oreochromis sp) criados con tecnologia biofloc Impact of clay minerals on reservoir sandstone properties: comparative study in Colombian eastern cordillera and middle Magdalena valley basins Enhancing mobile robot navigation: integrating reactive autonomy through deep learning and fuzzy behavior Modelo de negocios a partir de la cadena de valor industrial: Caso bioempaques de biomasa residual de cacao
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1