Challenge of Rainfall Uncertainty in the Study of Deficit Irrigation

Ligalem Agegn Asres, Melaku Adugnaw Walle
{"title":"Challenge of Rainfall Uncertainty in the Study of Deficit Irrigation","authors":"Ligalem Agegn Asres, Melaku Adugnaw Walle","doi":"10.5755/j01.erem.80.2.34118","DOIUrl":null,"url":null,"abstract":"One of the alternative methods for managing irrigation water is deficit irrigation, particularly alternate furrow irrigation (AFI). This deficit in irrigation is affected by uncontrolled rainfall. In line with this, rainfall uncertainty causes a variation between the measured actual crop evapotranspiration and the theoretical crop evapotranspiration. Let us imagine that rain falls during the deficit irrigation research, and the soil moisture under the deficit experiment is then raised to the soil field capacity. It is incorrect to report the result as a deficit. Thus, there is a research gap on the effect of rainfall uncertainty on the quantity of theoretical and actual crop evapotranspiration under deficit irrigation. This study was carried out at the Arba Minch University demonstration site on onion crops. Using CROPWAT 8.0 software, the reference evapotranspiration (ETo) was calculated using the Penman-Monteith formula. The crop coefficient and ETo were used to calculate the theoretical crop evapotranspiration. In contrast, actual crop evapotranspiration was calculated using soil moisture measurements before and after each irrigation event after applying theoretical crop evapotranspiration. As a result, there is a significant difference between the calculated theoretical crop evapotranspiration and actual crop evapotranspiration from a deficit study. Thus, the calculated seasonal theoretical crop evapotranspiration was 201.72 mm. On the other hand, the actual crop evapotranspiration was 275.82 mm. This revealed that the actual crop evapotranspiration was greater than the calculated theoretical crop evapotranspiration by 36.7%. Uncontrolled rainfall was identified as the output’s cause. This has an evident effect on the deficit in experimental research. Hence, conducting the deficit experiment in a greenhouse is more reasonable. In addition, it is possible to assess actual crop evapotranspiration based on daily soil moisture measurements and report the deficit level based on the measured amount.","PeriodicalId":11703,"journal":{"name":"Environmental Research, Engineering and Management","volume":" 37","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research, Engineering and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5755/j01.erem.80.2.34118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

One of the alternative methods for managing irrigation water is deficit irrigation, particularly alternate furrow irrigation (AFI). This deficit in irrigation is affected by uncontrolled rainfall. In line with this, rainfall uncertainty causes a variation between the measured actual crop evapotranspiration and the theoretical crop evapotranspiration. Let us imagine that rain falls during the deficit irrigation research, and the soil moisture under the deficit experiment is then raised to the soil field capacity. It is incorrect to report the result as a deficit. Thus, there is a research gap on the effect of rainfall uncertainty on the quantity of theoretical and actual crop evapotranspiration under deficit irrigation. This study was carried out at the Arba Minch University demonstration site on onion crops. Using CROPWAT 8.0 software, the reference evapotranspiration (ETo) was calculated using the Penman-Monteith formula. The crop coefficient and ETo were used to calculate the theoretical crop evapotranspiration. In contrast, actual crop evapotranspiration was calculated using soil moisture measurements before and after each irrigation event after applying theoretical crop evapotranspiration. As a result, there is a significant difference between the calculated theoretical crop evapotranspiration and actual crop evapotranspiration from a deficit study. Thus, the calculated seasonal theoretical crop evapotranspiration was 201.72 mm. On the other hand, the actual crop evapotranspiration was 275.82 mm. This revealed that the actual crop evapotranspiration was greater than the calculated theoretical crop evapotranspiration by 36.7%. Uncontrolled rainfall was identified as the output’s cause. This has an evident effect on the deficit in experimental research. Hence, conducting the deficit experiment in a greenhouse is more reasonable. In addition, it is possible to assess actual crop evapotranspiration based on daily soil moisture measurements and report the deficit level based on the measured amount.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
缺水灌溉研究中降雨量不确定性的挑战
亏缺灌溉,特别是交替沟灌(AFI)是管理灌溉水的替代方法之一。这种亏缺灌溉受到不可控降雨的影响。因此,降雨的不确定性会导致实际作物蒸散量与理论作物蒸散量之间的差异。假设在亏缺灌溉研究期间降雨,亏缺实验下的土壤水分随之升高到土壤田间容重。将结果报告为亏缺是不正确的。因此,关于降雨量的不确定性对亏缺灌溉下作物理论蒸散量和实际蒸散量的影响还存在研究空白。这项研究是在阿尔巴明奇大学洋葱作物示范基地进行的。使用 CROPWAT 8.0 软件,利用彭曼-蒙蒂斯公式计算了参考蒸散量(ETo)。作物系数和 ETo 被用来计算作物的理论蒸散量。而实际作物蒸散量则是在应用理论作物蒸散量后,利用每次灌溉前后的土壤水分测量值计算得出的。因此,计算得出的作物理论蒸散量与赤字研究得出的作物实际蒸散量之间存在显著差异。因此,计算得出的季节性作物理论蒸散量为 201.72 毫米。另一方面,作物实际蒸散量为 275.82 毫米。这表明,实际作物蒸散量比计算得出的理论作物蒸散量高出 36.7%。不受控制的降雨量被认为是造成这一结果的原因。这对实验研究中的赤字有明显影响。因此,在温室中进行赤字实验更为合理。此外,还可以根据每日土壤水分测量值评估作物的实际蒸散量,并根据测量值报告赤字水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Research, Engineering and Management
Environmental Research, Engineering and Management Environmental Science-Environmental Engineering
CiteScore
2.40
自引率
0.00%
发文量
32
期刊介绍: First published in 1995, the journal Environmental Research, Engineering and Management (EREM) is an international multidisciplinary journal designed to serve as a roadmap for understanding complex issues and debates of sustainable development. EREM publishes peer-reviewed scientific papers which cover research in the fields of environmental science, engineering (pollution prevention, resource efficiency), management, energy (renewables), agricultural and biological sciences, and social sciences. EREM’s topics of interest include, but are not limited to, the following: environmental research, ecological monitoring, and climate change; environmental pollution – impact assessment, mitigation, and prevention; environmental engineering, sustainable production, and eco innovations; environmental management, strategy, standards, social responsibility; environmental economics, policy, and law; sustainable consumption and education.
期刊最新文献
Challenge of Rainfall Uncertainty in the Study of Deficit Irrigation A Study on Heavy Metal Contamination of Yard Soils and its Remediation Potential by Weedy Species Performance Investigation of Surface Modified Ceramic Microfiltration Membranes of Ionic Water Treatment Production of Xanthan Gum from Inedible Parts of Broccoli and Cauliflower Assessment of Household Waste Generation and Management in Rural Areas: A Case Study in Ha Nam Province, Vietnam
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1