Thermal Effects on Monolithic 3D Ferroelectric Transistors for Deep Neural Networks Performance

IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS Advanced intelligent systems (Weinheim an der Bergstrasse, Germany) Pub Date : 2024-07-03 DOI:10.1002/aisy.202400019
Shubham Kumar, Yogesh Singh Chauhan, Hussam Amrouch
{"title":"Thermal Effects on Monolithic 3D Ferroelectric Transistors for Deep Neural Networks Performance","authors":"Shubham Kumar,&nbsp;Yogesh Singh Chauhan,&nbsp;Hussam Amrouch","doi":"10.1002/aisy.202400019","DOIUrl":null,"url":null,"abstract":"<p>Monolithic three-dimensional (M3D) integration advances integrated circuits by enhancing density and energy efficiency. Ferroelectric thin-film transistors (Fe-TFTs) attract attention for neuromorphic computing and back-end-of-the-line (BEOL) compatibility. However, M3D faces challenges like increased runtime temperatures due to limited heat dissipation, impacting system reliability. This work demonstrates the effect of temperature impact on single-gate (SG) Fe-TFT reliability. SG Fe-TFTs have limitations such as read-disturbance and small memory windows, constraining their use. To mitigate these, dual-gate (DG) Fe-TFTs are modeled using technology computer-aided design, comparing their performance. Compute-in-memory (CIM) architectures with SG and DG Fe-TFTs are investigated for deep neural networks (DNN) accelerators, revealing heat's detrimental effect on reliability and inference accuracy. DG Fe-TFTs exhibit about 4.6x higher throughput than SG Fe-TFTs. Additionally, thermal effects within the simulated M3D architecture are analyzed, noting reduced DNN accuracy to 81.11% and 67.85% for SG and DG Fe-TFTs, respectively. Furthermore, various cooling methods and their impact on CIM system temperature are demonstrated, offering insights for efficient thermal management strategies.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"6 8","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400019","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202400019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Monolithic three-dimensional (M3D) integration advances integrated circuits by enhancing density and energy efficiency. Ferroelectric thin-film transistors (Fe-TFTs) attract attention for neuromorphic computing and back-end-of-the-line (BEOL) compatibility. However, M3D faces challenges like increased runtime temperatures due to limited heat dissipation, impacting system reliability. This work demonstrates the effect of temperature impact on single-gate (SG) Fe-TFT reliability. SG Fe-TFTs have limitations such as read-disturbance and small memory windows, constraining their use. To mitigate these, dual-gate (DG) Fe-TFTs are modeled using technology computer-aided design, comparing their performance. Compute-in-memory (CIM) architectures with SG and DG Fe-TFTs are investigated for deep neural networks (DNN) accelerators, revealing heat's detrimental effect on reliability and inference accuracy. DG Fe-TFTs exhibit about 4.6x higher throughput than SG Fe-TFTs. Additionally, thermal effects within the simulated M3D architecture are analyzed, noting reduced DNN accuracy to 81.11% and 67.85% for SG and DG Fe-TFTs, respectively. Furthermore, various cooling methods and their impact on CIM system temperature are demonstrated, offering insights for efficient thermal management strategies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热效应对单片 3D 铁电晶体管深度神经网络性能的影响
单片三维(M3D)集成通过提高密度和能效推动了集成电路的发展。铁电薄膜晶体管(Fe-TFT)因其神经形态计算和后端(BEOL)兼容性而备受关注。然而,M3D 面临着一些挑战,如由于散热受限而导致运行时温度升高,影响系统可靠性。这项工作展示了温度对单栅(SG)Fe-TFT 可靠性的影响。SG Fe-TFT 具有读取干扰和内存窗口小等局限性,限制了其使用。为了缓解这些问题,我们使用计算机辅助设计技术对双栅(DG)Fe-TFT 进行了建模,并对其性能进行了比较。针对深度神经网络(DNN)加速器,研究了采用 SG 和 DG Fe-TFT 的内存计算(CIM)架构,揭示了热量对可靠性和推理准确性的不利影响。DG Fe-TFT 的吞吐量比 SG Fe-TFT 高出约 4.6 倍。此外,还分析了模拟 M3D 架构的热效应,发现 SG 和 DG Fe-TFT 的 DNN 精确度分别降低到 81.11% 和 67.85%。此外,还展示了各种冷却方法及其对 CIM 系统温度的影响,为高效热管理策略提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
期刊最新文献
Masthead A Flexible, Architected Soft Robotic Actuator for Motorized Extensional Motion Design and Optimization of a Magnetic Field Generator for Magnetic Particle Imaging with Soft Magnetic Materials High-Performance Textile-Based Capacitive Strain Sensors via Enhanced Vapor Phase Polymerization of Pyrrole and Their Application to Machine Learning-Assisted Hand Gesture Recognition Optimized Magnetically Docked Ingestible Capsules for Non-Invasive Refilling of Implantable Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1