FastFaceCLIP: A lightweight text-driven high-quality face image manipulation

IF 1.5 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IET Computer Vision Pub Date : 2024-07-02 DOI:10.1049/cvi2.12295
Jiaqi Ren, Junping Qin, Qianli Ma, Yin Cao
{"title":"FastFaceCLIP: A lightweight text-driven high-quality face image manipulation","authors":"Jiaqi Ren,&nbsp;Junping Qin,&nbsp;Qianli Ma,&nbsp;Yin Cao","doi":"10.1049/cvi2.12295","DOIUrl":null,"url":null,"abstract":"<p>Although many new methods have emerged in text-driven images, the large computational power required for model training causes these methods to have a slow training process. Additionally, these methods consume a considerable amount of video random access memory (VRAM) resources during training. When generating high-resolution images, the VRAM resources are often insufficient, which results in the inability to generate high-resolution images. Nevertheless, recent Vision Transformers (ViTs) advancements have demonstrated their image classification and recognition capabilities. Unlike the traditional Convolutional Neural Networks based methods, ViTs have a Transformer-based architecture, leverage attention mechanisms to capture comprehensive global information, moreover enabling enhanced global understanding of images through inherent long-range dependencies, thus extracting more robust features and achieving comparable results with reduced computational load. The adaptability of ViTs to text-driven image manipulation was investigated. Specifically, existing image generation methods were refined and the FastFaceCLIP method was proposed by combining the image-text semantic alignment function of the pre-trained CLIP model with the high-resolution image generation function of the proposed FastFace. Additionally, the Multi-Axis Nested Transformer module was incorporated for advanced feature extraction from the latent space, generating higher-resolution images that are further enhanced using the Real-ESRGAN algorithm. Eventually, extensive face manipulation-related tests on the CelebA-HQ dataset challenge the proposed method and other related schemes, demonstrating that FastFaceCLIP effectively generates semantically accurate, visually realistic, and clear images using fewer parameters and less time.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"18 7","pages":"950-967"},"PeriodicalIF":1.5000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12295","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12295","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Although many new methods have emerged in text-driven images, the large computational power required for model training causes these methods to have a slow training process. Additionally, these methods consume a considerable amount of video random access memory (VRAM) resources during training. When generating high-resolution images, the VRAM resources are often insufficient, which results in the inability to generate high-resolution images. Nevertheless, recent Vision Transformers (ViTs) advancements have demonstrated their image classification and recognition capabilities. Unlike the traditional Convolutional Neural Networks based methods, ViTs have a Transformer-based architecture, leverage attention mechanisms to capture comprehensive global information, moreover enabling enhanced global understanding of images through inherent long-range dependencies, thus extracting more robust features and achieving comparable results with reduced computational load. The adaptability of ViTs to text-driven image manipulation was investigated. Specifically, existing image generation methods were refined and the FastFaceCLIP method was proposed by combining the image-text semantic alignment function of the pre-trained CLIP model with the high-resolution image generation function of the proposed FastFace. Additionally, the Multi-Axis Nested Transformer module was incorporated for advanced feature extraction from the latent space, generating higher-resolution images that are further enhanced using the Real-ESRGAN algorithm. Eventually, extensive face manipulation-related tests on the CelebA-HQ dataset challenge the proposed method and other related schemes, demonstrating that FastFaceCLIP effectively generates semantically accurate, visually realistic, and clear images using fewer parameters and less time.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FastFaceCLIP:轻量级文本驱动的高质量人脸图像处理工具
虽然在文本驱动图像领域出现了许多新方法,但模型训练所需的计算能力很大,导致这些方法的训练过程很慢。此外,这些方法在训练过程中会消耗大量视频随机存取存储器(VRAM)资源。在生成高分辨率图像时,VRAM 资源往往不足,导致无法生成高分辨率图像。不过,视觉转换器(ViTs)的最新进展已经证明了其图像分类和识别能力。与传统的基于卷积神经网络的方法不同,ViTs 采用基于变换器的架构,利用注意力机制捕捉全面的全局信息,并通过固有的长距离依赖关系增强对图像的全局理解,从而提取更强大的特征,并在减少计算负荷的情况下实现可比的结果。研究了 ViTs 对文本驱动图像处理的适应性。具体而言,对现有的图像生成方法进行了改进,并通过将预先训练的 CLIP 模型的图像-文本语义配准功能与所提出的 FastFace 的高分辨率图像生成功能相结合,提出了 FastFaceCLIP 方法。此外,还加入了多轴嵌套变换器模块,用于从潜空间进行高级特征提取,生成更高分辨率的图像,并使用 Real-ESRGAN 算法对图像进行进一步增强。最终,在 CelebA-HQ 数据集上进行的大量人脸操作相关测试对所提出的方法和其他相关方案提出了挑战,证明 FastFaceCLIP 能有效地生成语义准确、视觉逼真和清晰的图像,而且参数更少、时间更短。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IET Computer Vision
IET Computer Vision 工程技术-工程:电子与电气
CiteScore
3.30
自引率
11.80%
发文量
76
审稿时长
3.4 months
期刊介绍: IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision. IET Computer Vision welcomes submissions on the following topics: Biologically and perceptually motivated approaches to low level vision (feature detection, etc.); Perceptual grouping and organisation Representation, analysis and matching of 2D and 3D shape Shape-from-X Object recognition Image understanding Learning with visual inputs Motion analysis and object tracking Multiview scene analysis Cognitive approaches in low, mid and high level vision Control in visual systems Colour, reflectance and light Statistical and probabilistic models Face and gesture Surveillance Biometrics and security Robotics Vehicle guidance Automatic model aquisition Medical image analysis and understanding Aerial scene analysis and remote sensing Deep learning models in computer vision Both methodological and applications orientated papers are welcome. Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review. Special Issues Current Call for Papers: Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf
期刊最新文献
SRL-ProtoNet: Self-supervised representation learning for few-shot remote sensing scene classification Balanced parametric body prior for implicit clothed human reconstruction from a monocular RGB Social-ATPGNN: Prediction of multi-modal pedestrian trajectory of non-homogeneous social interaction HIST: Hierarchical and sequential transformer for image captioning Multi-modal video search by examples—A video quality impact analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1