{"title":"Social-ATPGNN: Prediction of multi-modal pedestrian trajectory of non-homogeneous social interaction","authors":"Kehao Wang, Han Zou","doi":"10.1049/cvi2.12286","DOIUrl":null,"url":null,"abstract":"<p>With the development of automatic driving and path planning technology, predicting the moving trajectory of pedestrians in dynamic scenes has become one of key and urgent technical problems. However, most of the existing techniques regard all pedestrians in the scene as equally important influence on the predicted pedestrian's trajectory, and the existing methods which use sequence-based time-series generative models to obtain the predicted trajectories, do not allow for parallel computation, it will introduce a significant computational overhead. A new social trajectory prediction network, Social-ATPGNN which integrates both temporal information and spatial one based on ATPGNN is proposed. In space domain, the pedestrians in the predicted scene are formed into an undirected and non fully connected graph, which solves the problem of homogenisation of pedestrian relationships, then, the spatial interaction between pedestrians is encoded to improve the accuracy of modelling pedestrian social consciousness. After acquiring high-level spatial data, the method uses Temporal Convolutional Network which could perform parallel calculations to capture the correlation of time series of pedestrian trajectories. Through a large number of experiments, the proposed model shows the superiority over the latest models on various pedestrian trajectory datasets.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"18 7","pages":"907-921"},"PeriodicalIF":1.5000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12286","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12286","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
With the development of automatic driving and path planning technology, predicting the moving trajectory of pedestrians in dynamic scenes has become one of key and urgent technical problems. However, most of the existing techniques regard all pedestrians in the scene as equally important influence on the predicted pedestrian's trajectory, and the existing methods which use sequence-based time-series generative models to obtain the predicted trajectories, do not allow for parallel computation, it will introduce a significant computational overhead. A new social trajectory prediction network, Social-ATPGNN which integrates both temporal information and spatial one based on ATPGNN is proposed. In space domain, the pedestrians in the predicted scene are formed into an undirected and non fully connected graph, which solves the problem of homogenisation of pedestrian relationships, then, the spatial interaction between pedestrians is encoded to improve the accuracy of modelling pedestrian social consciousness. After acquiring high-level spatial data, the method uses Temporal Convolutional Network which could perform parallel calculations to capture the correlation of time series of pedestrian trajectories. Through a large number of experiments, the proposed model shows the superiority over the latest models on various pedestrian trajectory datasets.
期刊介绍:
IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision.
IET Computer Vision welcomes submissions on the following topics:
Biologically and perceptually motivated approaches to low level vision (feature detection, etc.);
Perceptual grouping and organisation
Representation, analysis and matching of 2D and 3D shape
Shape-from-X
Object recognition
Image understanding
Learning with visual inputs
Motion analysis and object tracking
Multiview scene analysis
Cognitive approaches in low, mid and high level vision
Control in visual systems
Colour, reflectance and light
Statistical and probabilistic models
Face and gesture
Surveillance
Biometrics and security
Robotics
Vehicle guidance
Automatic model aquisition
Medical image analysis and understanding
Aerial scene analysis and remote sensing
Deep learning models in computer vision
Both methodological and applications orientated papers are welcome.
Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review.
Special Issues Current Call for Papers:
Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf
Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf