Data-Driven Reliability Prediction for District Heating Networks

IF 7 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Smart Cities Pub Date : 2024-07-02 DOI:10.3390/smartcities7040067
Lasse Kappel Mortensen, H. Shaker
{"title":"Data-Driven Reliability Prediction for District Heating Networks","authors":"Lasse Kappel Mortensen, H. Shaker","doi":"10.3390/smartcities7040067","DOIUrl":null,"url":null,"abstract":"As district heating networks age, current asset management practices, such as those relying on static life expectancies and age- and rule-based approaches, need to be replaced by data-driven asset management. As an alternative to physics-of-failure models that are typically preferred in the literature, this paper explores the application of more accessible traditional and novel machine learning-enabled reliability models for analyzing the reliability of district heating pipes and demonstrates how common data deficiencies can be accommodated by modifying the models’ likelihood expressions. The tested models comprised the Herz, Weibull, and the Neural Weibull Proportional Hazard models. An assessment of these models on data from an actual district heating network in Funen, Denmark showed that the relative youth of the network complicated the validation of the models’ distributional assumptions. However, a comparative evaluation of the models showed that there is a significant benefit in employing data-driven reliability modeling as they enable pipes to be differentiated based on the their working conditions and intrinsic features. Therefore, it is concluded that data-driven reliability models outperform current asset management practices such as age-based vulnerability ranking.","PeriodicalId":34482,"journal":{"name":"Smart Cities","volume":null,"pages":null},"PeriodicalIF":7.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Cities","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.3390/smartcities7040067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

As district heating networks age, current asset management practices, such as those relying on static life expectancies and age- and rule-based approaches, need to be replaced by data-driven asset management. As an alternative to physics-of-failure models that are typically preferred in the literature, this paper explores the application of more accessible traditional and novel machine learning-enabled reliability models for analyzing the reliability of district heating pipes and demonstrates how common data deficiencies can be accommodated by modifying the models’ likelihood expressions. The tested models comprised the Herz, Weibull, and the Neural Weibull Proportional Hazard models. An assessment of these models on data from an actual district heating network in Funen, Denmark showed that the relative youth of the network complicated the validation of the models’ distributional assumptions. However, a comparative evaluation of the models showed that there is a significant benefit in employing data-driven reliability modeling as they enable pipes to be differentiated based on the their working conditions and intrinsic features. Therefore, it is concluded that data-driven reliability models outperform current asset management practices such as age-based vulnerability ranking.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数据驱动的区域供热网络可靠性预测
随着区域供热网络的老化,目前的资产管理实践,如依赖于静态预期寿命和基于年龄和规则的方法,需要被数据驱动的资产管理所取代。作为文献中通常首选的物理失效模型的替代方案,本文探讨了如何应用更易于使用的传统和新型机器学习可靠性模型来分析区域供热管道的可靠性,并展示了如何通过修改模型的似然表达式来解决常见的数据缺陷。测试的模型包括赫兹模型、Weibull 模型和神经 Weibull 比例危险模型。通过对丹麦富能实际区域供热网络的数据对这些模型进行评估发现,网络的相对年轻化使得模型分布假设的验证变得复杂。不过,对模型的比较评估表明,采用数据驱动的可靠性模型有很大好处,因为这些模型可以根据管道的工作条件和内在特征对其进行区分。因此,得出的结论是,数据驱动的可靠性模型优于当前的资产管理方法,如基于年龄的脆弱性排序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Smart Cities
Smart Cities Multiple-
CiteScore
11.20
自引率
6.20%
发文量
0
审稿时长
11 weeks
期刊介绍: Smart Cities (ISSN 2624-6511) provides an advanced forum for the dissemination of information on the science and technology of smart cities, publishing reviews, regular research papers (articles) and communications in all areas of research concerning smart cities. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible, with no restriction on the maximum length of the papers published so that all experimental results can be reproduced.
期刊最新文献
Energy Management System for a Residential Positive Energy District Based on Fuzzy Logic Approach (RESTORATIVE) Human-Centric Collaboration and Industry 5.0 Framework in Smart Cities and Communities: Fostering Sustainable Development Goals 3, 4, 9, and 11 in Society 5.0 Enhancing Property Valuation in Post-War Recovery: Integrating War-Related Attributes into Real Estate Valuation Practices Personalization of the Car-Sharing Fleet Selected for Commuting to Work or for Educational Purposes—An Opportunity to Increase the Attractiveness of Systems in Smart Cities Data-Driven Reliability Prediction for District Heating Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1